基于TDA2030的音频功率放大器毕业论文

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

摘要本系统以高效Hi-fi功放集成芯片TDA2030为核心元件,制作了高保真的音频功率放大器,并利用AltiumDesigner软件设计完成原理图和PCB板。该系统在电源电压V16,负载电阻为4时能达到18W的输出功率,且只有0.5%的失真度。系统有良好的短路和过热保护电路,比较理想的达到了设计指标的要求。高效率的音频功率放大器不仅仅是在便携式设备中需要,在大功率的设备中也占有较大的比重。随着人们居住条件的改善,高保真音响设备和高档的家庭影院也逐渐兴起。集成音频功放在这些设备中起到了很重要的作用。关键词:高保真音频功率放大第一章绪论音频功率放大器是一个技术已经相当成熟的领域,几十年来人们为之付出了不懈的努力。最近几年,无论是在线路技术还是元器件方面,乃至是思想认识上都取得了长足的进步。1.1集成音频放大器发展过程上个世纪80年代以前,输出功率仅几瓦的声频功率放大器都要采用分立元件来制作。进入80年代后,国内开始研制生产出一些小功率的功放IC,但由于这些功放IC的性能指标不佳,尤其是可靠性比较差,很快就被国外生产的功放IC所取代。日本生产的HA1392、TA7240曾经是80年代用得非常普遍的功放IC。HA1392与TA7240的输出功率都只有4W~6W。。意法SGS公司在80年代初开发生产的TDA2030A算是比较好的一款功放IC,它的输出功率能够达到12W以上。尽管SGS公司在TDA2030A基础上又研制出TDA2040、TDA2050功放IC,使输出功率能够达到24W,但由于它们的电源适用范围只有±22V,如果使用未经稳压的整流滤波直流电供电,它们实际上都只能给4Ω负载输出12W功率。在90年代以前,电子器件生产厂商提供的功放IC输出功率实际都在30W以下。在经过10多年的努力后,美国NS公司和意法SGS公司都在90年代期间相继开发生产出多款输出功率超过30W的功放IC芯片。其中,LM3876、LM3886是美国NS公司的代表作,TDA7294、TDA7295、TDA7296是意法SGS公司的代表作。1.2音频放大器设计背景音频放大器的目的是在产生声音的输出元件上重建输入的音频信号,信号音量和功率级都要理想——如实、有效且失真低。音频范围为约20Hz~20kHz,因此放大器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要小一些,如低音喇叭或高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。1.3音频放大器设计意义在传统晶体管放大器中,输出级包含提供瞬时连续输出电流的晶体管,实现音频系统放大器许多可能的类型包括A类放大器,AB类放大器和B类放大器。与D类放大器设计相比较,即使是最有效的线性输出级,它们的输出级功耗也很大。这种差别使得D类放大器在许多应用中具有显著优势,因为低功耗产生热量较少,节省印制电路板面积和成本,并且能够延长便携式系统的电池寿命。另外,D类功率放大器工作于开关状态,理论效率可达100%,实际的运用中也可达80以上,功率器件的耗散功率小,产生热量少,可以大大减小散热器的尺寸,连续输出功率很容易达到数百瓦,功率MOS有自我保护电路,可以大大简化保护电路,而且不引入非线性失真。1.4名词解释音响系统整体技术指标性能的优劣,取决于每一个单元自身性能的好坏,如果系统中的每一个单元的技术指标都较高,那么系统整体的技术指标则很好。其技术指标主要有六项:频率响应、信噪比、动态范围、失真度、瞬态响应、立体声分离度、立体声平衡度。1.3.1频率响应:所谓频率响应是指音响设备重放时的频率范围以及声波的幅度随频率的变化关系。一般检测此项指标以1000Hz的频率幅度为参考,并用对数以分贝(dB)为单位表示频率的幅度。音响系统的总体频率响应理论上要求为20~20000Hz。在实际使用中由于电路结构、元件的质量等原因,往往不能够达到该要求,但一般至少要达到32~18000Hz。1.3.2信噪比:所谓信噪比是指音响系统对音源软件的重放声与整个系统产生的新的噪声的比值,其噪声主要有热噪声、交流噪声、机械噪声等等。一般检测此项指标以重放信号的额定输出功率与无信号输入时系统噪声输出功率的对数比值分贝(dB)来表示。一般音响系统的信噪比需在85dB以上。1.3.3动态范围:动态范围是指音响系统重放时最大不失真输出功率与静态时系统噪声输出功率之比的对数值,单位为分贝(dB)。一般性能较好的音响系统的动态范围在100(dB)以上。1.3.4失真:失真是指音响系统对音源信号进行重放后,使原音源信号的某些部分(波形、频率等等)发生了变化。音响系统的失真主要有以下几种:a.谐波失真:所谓谐波失真是指音响系统重放后的声音比原有信号源多出许多额外的谐波成分。此额外的谐波成分信号是信号源频率的倍频或分频,它是由负反馈网络或放大器的非线性特性引起的。高保真音响系统的谐波失真应小于1%。b.互调失真:互调失真也是一种非线性失真,它是两个以上的频率分量按一定比例混合,各个频率信号之间互相调制,通过放音设备后产生新增加的非线性信号,该信号包括各个信号之间的和及差的信号。c.瞬态失真:瞬态失真又称瞬态响应,它的产生主要是当较大的瞬态信号突然加到放大器时由于放大器的反映较慢,从而使信号产生失真。一般以输入方波信号通过放音设备后,观察放大器输出信号的包络波形是否输入的方波波形相似来表达放大器对瞬态信号的跟随能力。d.立体声分离度:立体声分离度表示立体声音响系统中左、右两个声道之间的隔离度,它实际上反映了左、右两个声道相互串扰的程度。如果两个声道之间串扰较大,那么重放声音的立体感将减弱。e.立体声平衡度:立体声平衡度表示立体放音系统中左、右声道增益的差别,如果不平衡度过大,重放的立体声的声像定位将产生偏移。一般高品质音响系统的立体声平衡度应小于1dB。1.5音频放大器设计要求1、系统有左右双声道,同时有低音调节,高音调节功能;2、该电路工作于双电源(OCL)状态;3、负载功率达到10W以上;4、失真率不超过1%。第二章系统电路设计2.1方案的选择2.1.1实现方案分析方案一:采用锁环频率相合成技术外加音响放大器采用锁相环频率合成技术,先用锁相环频率合成产生一定范围的频率,在通过传感器把接收到的频率信号转化音频信号。在通过低通滤波器把频率控制在音频所需要的频率范围。它的优点就是工作频率可调也可以达到很高的频率分辨率;缺点是要求使用的滤波器通带可变,实现很困难。具体方案如图3.1.1所示:图2.1.1锁环频率相合成技术框图方案二:采用直接数字式频率合成器DDS技术外加音响放大器采用直接数字式频率合成器(DDS),是用RAM存储所需波形的量化信息,按照不同频率要求以频率控制字K为步进对相位增量进行累加,以累加相位值作为地址码读取存放在内存里。DDS具有相对带宽很宽、频率转换时间极短、频率分辨率高等优点;另外,全数字化结构便于集成,输出相位连续,频率、相位和幅度也可实现程控。但在方案中需要一块FPGA,一块双口RAM,那么设计的成本较高。同时电路也不好仿真。实现起来也比较困难。方案三:采用直接给定的音频信号外加音响放大器采用直接所定的音频信号,是由MP3现代音频信号设备,直接给音响放大器。此电路简单,其优点是:在音频信号具有直接给定的音频频率,在频率方面没有晶振整形电路R分频器鉴相器环路滤波器压控振荡器可变分频器失真效果,而且具有混响器的效果。图2.1.2直接给定的音频信号外加音响放大器2.1.2方案的讨论通过对方案的比较和选择,选择第三个方案有三个原因:首先这个方案它设计简单可靠,软硬可相互补充各自的缺点。同时音响效果也比较好。音响放大电路设计由三部分组成:混合前置放大模块,音调输出控制模块,功率放大模块。混合前置放大模块作用是将磁带放音机输出的音乐信号混合放大。音调输出控制模块作用是主要是控制、调节音响放大器的幅频特性。功率放大模块作用是给音响放大的负载LR(扬声器)提供一定的输出功率;其次本方案能很好的进行模拟仿真能够完成计算机调试的过程,减少我们在制作过程中的麻烦;第三本方案也是本组讨论觉得最合适的方案,便宜且方便。2.2前置放大器在功率放大器之前,往往需要加入前置放大器,用于将各种音源送出的较微弱的电信号进行电压放大,对重放声音的音量、音调和立体声状态等进行调控。它通常由输入选择与均衡放大电路、等响音量控制电路、音调控制电路等组成,见图2-1所示。话音放大器电子混响器磁带防音机混合前值放大器音调控制器功率放大器图2-2前置放大器组成方框图前置放大器由于工作在功放电路的前端,它产生的声音失真将由功放电路放大,产生更大的失真。因此,对前置放大器要求信噪比要高、谐波失真度要小、输入阻抗要高、输出阻抗要低、立体声通道的一致性要好、声道的隔离度要高等。2.2.1音源选择电路用于音源与前置放大器的选通。图2-1-1为飞利浦公司生产的TDA1029音源电子开关电路。该音源电子开关可以对输入的4组立体声信号进行选通。图2-2-1音源选择电路2.2.2前置放大电路通常由分立元件或集成电路构成,集成电路的特点是增益高,噪声小,含有补偿电路,双通道一致性好,电路简单,安装、调试方便,在实际产品中常常使用集成电路小信号音频电压放大电路,如NE5532、TL082等,见图2-1-2。图2-2-2集成前置放大电路2.2.3.音调控制电路主要用于对音频信号各频段内的信号进行提升或衰减控制。一般分为RC衰减式音调控制电路、RC负反馈式音调控制电路两种形式。(1)RC衰减式音调控制电路,如图2-1-3。RP1是低音控制电位器,调节RP1对中高音的影响不大,而对低频信号的影响较显著;RP2是高音控制电位器,调节RP2对中低音的影响不大,而对高频信号的影响较显著。图2-2-3RC衰减式音调控制电路(2)RC负反馈式音调控制电路,如图2-1-4。RP1是低音控制电位器,当动片滑到最左端时,低音呈最大提升状态,当动片滑动到最右端时,低音呈最大衰减状态。RP2是高音控制电位器,当动片滑到最左端时,对高音呈最大提升状态,当动片滑到最右端时,对高音呈最大衰减状态。图2-2-4RC负反馈式音调控制电路2.2.4.音量控制电路其作用是调节馈入功放的信号电平,以控制扬声器的输出音量。包括电位器音量控制和电子式音量控制电路两种形式,如图2-1-5。电位器音量控制电路(左图)采用指数型电位器构成分压电路,直接控制信号电平。电子音量控制电路采用间接方式控制音量大小,可以克服电位器音量控制电路的缺点。偏流调节型音量控制电路如下图右图所示。图2-2-5音量控制电路2.2.5.等响控制电路其作用是在小音量放送音乐时利用频率补偿网络适当提升低音和高音分量,以弥补人耳听觉缺陷,达到较好的听音效果,常有以下两种电路形式。(1)抽头电位器响度控制电路,如图2-1-6所示。R1,C1,C2和抽头电位器组成频率补偿网络,电位器滑动触点既能控制输出音量,又能实现响度控制。图2-2-6抽头电位器响度控制电路(2)独立响度控制电路,如图2-2-7所示。独立于音量控制的响度控制电路,常应用于在音量遥控的音响系统中,电路中的响度控制开关(图中S1)由遥控电路控制。当S1置于ON位置时,响度控制电路具有低音补偿作用,在不同音量的情况下具有相同的低音提升量;当S1置于OFF位置时,电容C1被短路,因而电路无响度频率补偿作用。图2-2-7独立响度控制电路2.2.6.平衡控制电路其作用是调整左、右声道增益,使两声道增益相等,即用来校正左右声道的音量差别,使左右扬声器声级平衡,电路非常简单,通常由一个同轴双联电位器便可完成。2.2.7.图示均衡器(GraphicEqualizer,缩写为GEQ),也称为多段频率音调控制电路。它可以对整个音频范围内以若干个频率点为中心的频段分别进行提升或衰减的控制,从而实现对音质的精细调整。根据分段的多少可以分为5段、7段、10段、15段、27段、31

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功