第三讲抗菌肽——抗菌药物新资源第一节抗菌肽类活性物质的发展一、抗菌肽简介从微生物代谢产物中分离得到的一些多肽类抗生素很早已经被应用;但继1980年在美国天蚕体内发现了第一个动物来源的抗生素多肽-杀菌肽(cecropin)以来,在昆虫、两栖类、水产动物、包括人在内的哺乳动物甚至植物及细菌等广泛的生物谱中发现了至少1700余种抗菌肽;它们构成了宿主抵抗外来病原菌感染的第一道防线。一、抗菌肽简介抗菌肽是一类带正电荷的两亲性小分子肽的总称,通常含有11~50个氨基酸残基。按抗菌肽来源分为:微生物抗菌肽;动物抗菌肽;人源性抗菌肽;植物抗菌肽等。一、抗菌肽简介其中动物抗菌肽又分为:昆虫抗菌肽;哺乳动物抗菌肽;两栖动物抗菌肽3大类。根据抗菌肽作用对象的不同,又可以分为:抗细菌肽;抗真菌肽;抗肿瘤肽;既抗细菌又抗真菌的抗菌肽;既抗肿瘤又抗微生物的抗菌肽等类型。一、抗菌肽简介如此繁多的抗菌肽有其共同的特性,即微量抗菌谱广(包括革兰阳性菌、革兰阴性菌、真菌、寄生虫),同时有抗某些带包膜病毒的作用,甚至可杀伤肿瘤细胞,但且大多数抗菌肽对正常真核细胞无毒性或低毒性,且几乎无耐药性。正因如此,抗菌肽亦被称为天然的抗生素,因其有望克服日益严重的抗生素耐药问题而引起了人们极大的兴趣。一、抗菌肽简介对动物来源的抗菌肽的研究发现它们中的大多数是生物预防微生物感染的天然防卫系统的重要组成;在人和其它哺乳类中,这些多肽如防御素(defensins)是中性白细胞构成中的主要蛋白类物质(总共为10~18%),中性白细胞是对微生物侵袭和急性感染起着直接防卫作用的最重要的细胞;其它细胞也能产生这些多肽;在受伤的黏膜表面包括舌、气管、肠等发现有高浓度的多肽,这可能是一种重要的黏膜保护成分。一、抗菌肽简介当科学家研究受伤的青蛙和蟾蜍为什么在恶劣的环境下不受感染的原因时,发现了滑瓜蟾素(magainins);滑瓜蟾素和昆虫多肽如杀菌肽都由受伤后诱导产生,可以假定,这种诱导反应与生物体产生的免疫反应相似。二、阳离子多肽的基本结构和功能阳离子多肽有两个显著的特征:一是根据组成多肽分子的精氨酸和赖氨酸的数量,这些多肽具有至少一个净的二价正电荷,这些氨基酸在自然pH条件下都带有正电荷;二是这些带有正电荷的多肽能够在与细菌质膜发生作用时折叠成三维空间结构,从而可以形成由一个非极性氨基酸侧链组成的疏水面,和另外一个由极性氨基酸残基和带有正电荷氨基酸残基组成的亲水面;尽管这些阳离子多肽都具有这两个面,但其在氨基酸组成、多少和与细胞质膜发生作用后所形成的三维结构上差距甚大。二、阳离子多肽的基本结构和功能根据已经发现的100多种阳离子多肽在细菌质膜上形成的三维结构可以将其分为4种类别:第一种为α-螺旋结构:如cecropins(从Hyalophoracecropia昆虫中分离得到)和magainins(从Xenopuslaevis非洲蛙中分离得到);第二种为由2至3个二硫键桥稳定的β-片层结构:如defensins(可来自于不同的动物和植物)、protegrins(来自于猪)和tachyplesins(来自于蟹)等;第三种为含有一个或多个二硫键而形成环状结构的多肽:如bactenecin(来自于牛);第四种为富含某种特殊氨基酸如脯氨酸/精氨酸的伸展螺旋:如牛多肽Bc5和Bac7,以及猪多肽PR-39等。(a):β-片层结构的人源defensin-1;(b):α-螺旋结构的cecropin-melitlin杂合体;(c):伸展螺旋的indolicidin;(d):环状结构的bactenecin三、阳离子多肽的作用机制目前,国内外学者一致认为细胞膜是抗菌肽的主要作用靶点,多肽通过肽-膜脂作用而在细胞膜上形成孔道:造成细胞膜结构破坏;膜内外电压失衡;内容物泄漏;最终导致细胞死亡。带有正电荷的多肽(1)与带有负电荷的磷脂双层外表面(细胞质膜2)结合,导致局部的磷脂双层变窄。在膜电位的影响下,多肽插入膜内形成通道(3),导致胞质内分子外流,最终导致细胞死亡。阳离子多肽穿过革兰阴性菌细胞外膜的自身促进吸收作用带有正电荷的多肽与结合在脂多糖上的二价阳离子产生交互作用,导致增强穿越细胞外膜的阳离子多肽的自身吸收。阳离子多肽在细胞外膜上产生的交互作用也能导致增加其它常用抗菌药物的吸收,因而具有抗菌增强剂的作用。阳离子多肽与细胞外膜上脂多糖的结合可以用来解释这些多肽具有抗内毒素作用的原因。三、阳离子多肽的作用机制肽-膜脂作用的具体机制,观点不一,较为经典的有如下几种模式:桶状孔道模式(barrelstavemodel);毯式模式(carpetmodel);虫蚀样孔道模式(toroidal(wormhole)poremodel)。桶状孔道模式和毯式模式1、桶状孔道模式抗菌肽抗菌机制的早期研究多认为抗菌肽是通过桶状孔道模式形成细胞膜孔道而实现其杀菌作用的.以此模式形成细胞膜孔道的抗菌肽需符合如下要求:①抗菌肽以单体或多聚体的形式吸附于细胞膜;②吸附于膜的抗菌肽在低浓度下可以彼此识别并形成多聚体;换句话说,如果它们在细胞膜表面仅以小分子的单体或寡聚体存在,则不能破坏细胞膜;③在与膜作用的疏水环境中可以插入到细胞膜的疏水核心;④单体或寡聚体的后续募集可以增大孔径。其肽-膜脂作用过程与虫蚀样孔道形成相似。2、毯式模式在此过程中:带正电荷的抗菌肽单体分子通过静电作用象毯子一样吸附于带负电荷的细胞膜,α-螺旋纵轴与质膜平行,且其亲水侧与细胞膜脂质头端相接;继之,因疏水作用α-螺旋旋转重排至其疏水侧朝向细胞膜的疏水核心;当抗菌肽分子超过一定浓度时,通过破坏细胞膜脂质排列而致其破碎,就象去污剂破坏细胞一样,故此模式又称去污剂样模式。而在细胞溶解之前,可能有一个膜脂暂时性成孔(虫蚀样孔)的过程。与桶状孔道模式相比,毯式模式无需抗菌肽的特殊结构,也无需形成膜孔道,但需要强调的是,抗菌肽的正电荷需要分布于多肽全长,且在脂-膜作用的整个过程中抗菌肽始终与脂质头端作用而无多肽垂直重排过程。3、虫蚀样孔道模式3、虫蚀样孔道模式Ludtke等在研究滑瓜蟾素的作用机制时提出了此形成明显的α其疏水侧埋入膜脂双分子层中间的疏水层,而亲水侧则与质膜的极性头端作用并暴露于溶液;在肽/脂比例超过一定范围时,为避免抗菌肽亲水性残基暴露于膜的疏水性骨架,抗菌肽开始自身聚集,并在多肽引起的正向曲面张力的作用下,由与膜平行方向转为透膜的垂直方向,并形成透膜孔道。3、虫蚀样孔道模式透膜孔道除允许离子自由通过而形成离子流外,同时形成一过性脂质流,即:因径向弥散作用,孔道相连的两侧脂质单层的脂质头端向膜脂中间骨架快速跳跃,并参与形成透膜孔道的孔壁。孔壁由多肽α-螺旋的亲水侧和细胞膜脂质的亲水头端组成,而且孔径较桶状孔道模式大;这是虫蚀样孔道模式与桶状孔道模式的区别所在;外来多肽的加入、透膜孔道的形成、脂质的移位造成了膜结构的紊乱,最终导致细菌死亡。4、选择性杀伤机制抗菌肽的选择性杀伤机制一直是人们感兴趣的热点之一,有人认为原核生物和真核生物细胞膜的脂质特异性可以解释这一点。原核生物和真核生物细胞膜最主要的区别在于其脂质的组成和排列:哺乳动物细胞膜外层脂质为其所特有的呈电中性的两性磷脂,主要是卵磷脂和鞘磷脂;而细菌细胞膜则含有大量的带有负电荷的磷脂(如磷脂酰甘油和心磷脂),且有时其含量会超过50%,使其必然暴露于细胞外膜;此外,革兰阴性菌细胞壁主要由带大量负电荷的脂多糖组成。4、选择性杀伤机制抗菌肽可以选择性的结合并渗透带有负电荷的细胞膜,其动力在于2方面:①膜与抗菌肽疏水端的疏水作用;②膜脂质所带的负电荷与抗菌肽所带的正电荷间的静电吸引作用。然而,起自身防御作用的抗菌肽的疏水性通常太弱以至不足以与两性磷脂有效结合,从而防止了自身毒性。原核生物和真核生物细胞膜另一重要的区别在于后者含有丰富的真核细胞特有的固醇类物质,Matsuzaki等研究表明胆固醇的存在可以使人红细胞免受滑瓜蟾素2的破坏。肿瘤细胞等病变细胞膜脂质成分或排列变化可能是导致抗菌肽对其杀伤的关键。4、选择性杀伤机制总之,细胞膜的理化性质决定了抗菌肽可以选择性的广谱杀菌而且可以防止耐药的产生。首先,酶解和向细胞外排药物等耐药机制不存在于抗菌肽的抗菌过程;另外,抗菌肽的靶分子(阴离子脂质)是广泛存在于微生物界的重要的保守的细胞膜成份,所以,耐药的产生尤其困难甚至几乎不可能;也就是说,原核细胞和真核细胞膜间最简单的电荷区别是抗菌肽选择性杀伤、抗菌谱广且对正常真核细胞几乎无毒性或低毒性的关键所在。四、阳离子多肽的应用抗菌肽的发现不仅会推动临床抗菌药物的应用和对控制各种难以治疗病原菌的感染起到重要的作用,同时应用转基因技术将编码抗菌肽的这些基因转入到植物或动物中,能够起到防止病原菌感染的作用。抗菌肽因其独特的抗菌机制在工业、农业、畜牧业及医药等方面具有广阔的应用前景。研究开发的公司名称多肽适应症MagaininPharmaceuticalsMSI-78(α-螺旋)MSI-78脓疱病糖尿病足溃疡表面感染AppliedMicrobiology/Astra/MerckNisin(lantibiotic)胃幽门杆菌感染/溃疡AppliedMicrobiology/NipponShojiNisin突变体万古霉素耐药肠球菌MicrologixBiotechMBI-CNMBI-20系列(α-螺旋)革兰阳性菌感染革兰阴性菌感染、普通抗菌药物的增效剂IntrabioticsIB367(β-片层)口腔黏膜炎(口腔溃疡)XomaMycoprex(BPI衍生物)系统性念珠菌病、fluconazole增效剂目前正在进行临床研究的一些阳离子多肽的适应症应用转基因技术将抗菌肽基因转入植物或动物的一些例子转基因品种所用的多肽多肽的二级结构多肽的表达水平对病原菌的抗性烟草大麦α-hordothioninβ-片层2-60ng/mg叶蛋白Clavibactermichiganesis烟草大麦β-hordothioninβ-片层2-60ng/mg叶蛋白Clavibactermichiganesis对syringae假单孢菌无效烟草大麦α-hordothioninβ-片层++capestris黄单孢菌,对Clavibactermichiganesis无效烟草巨大silkmothcecropinBα-螺旋未测到对B.solanacearum和syringae假单孢菌无效烟草巨大silkmothcecropinBα-螺旋未测syringae假单孢菌pv.tabaci土豆巨大silkmothcecropinBα-螺旋无对Erwinia无效果土豆马蹄蟹tachyplesin1β-片层+对Erwinia有轻微的抗性烟草小萝卜植物-defensinRs-AMP2β-片层0.2-2.4μg/mg叶蛋白Alternarialongpipes(真菌)烟草AmaranthheveinAc-AMP2β-片层0.6-1.1μg/mg叶蛋白体外有抗真菌活性,但在体内无作用烟草甜胡椒结Mj-AMP2β-片层0.9-1.4μg/mg叶蛋白体外有抗真菌活性,但在体内无作用烟草CecropinB类似物SB-37和Shiva-1α-螺旋-1μg/mg叶蛋白细菌减少(Burkholderiasolanacearum)烟草ChimericcecropinA/B杂合体α-螺旋微量无效烟草大麦α-thioinβ-片层20ng/mg叶蛋白丁香假单孢菌pv.syringae烟草小麦α-thioinβ-片层?无效小鼠CecropinB类似物α-螺旋未报道Brucellaabortus烟草大麦脂-转移蛋白α-螺旋+丁香假单孢菌第二节防御素抗菌肽家族的研究进展一、防御素的结构特征哺乳动物的抗菌肽主要有两大类:防御素和cathelicidins。防御素为一族脊椎动物来源的抗菌肽,其富含β-片层结构及有一个由六个二硫键连接的半胱氨酸构架,进一步可分为α-和β-两