3.1.2概率的意义课件(公开课)(人教A版必修3)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

复习:1、你能回忆随机事件发生的概率的定义吗?在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率记作p(A).nnA2、谁能说一说掷一枚质地均匀的硬币出现正面的概率为1/2的含义?掷一枚质地均匀的硬币出现正面的可能性是0.5,也就是说掷一枚质地均匀的硬币出现正面的机会是50%。一、概率的正确理解P113思考:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?有三种可能:“两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”探究全班同学各取一枚硬币,连续两次抛掷,观察它落地后的朝向,并纪录结果.重复上面过程10次.计算三种结果的频率,你有什么发现?发现“两次均正面朝上”的频率与“两次均反面朝上”的频率大致相等;“正面朝上、反面朝上各一次”的频率大于“两次均正面朝上”(“两次均反面朝上”)的频率。事实上,“两次均正面朝上”的概率为0.25,“两次均反面朝上”的概率也为0.25,“正面朝上、反面朝上各一次”的概率为0.5。随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机性中的规律性,我们就能比较准确的预测随机事件发生的可能性。随机事件的随机性与规律性:P114思考如果某种彩票的中奖概率为,那么买1000张这种彩票一定能中奖吗?(假设该彩票有足够多的张数。)不一定,而有的人认为一定中奖,那么他的理由是什么呢?11000注意:这个错误产生的原因是,有人把中奖概率理解为共有1000张彩票,其中有1张是中奖号码,然后看成不放回抽样,所以购买1000张彩票,当然一定能中奖。而实际上彩票的总张数远远大于1000。每张彩票中奖是随机的,1000张彩票有几张中奖也是随机的,但这种随机性具有规律性。11000概率在实际问题中的应用1、游戏的公平性2、决策中的概率思想3、天气预报的概率解释4、遗传机理中的统计规律2、游戏的公平性思考:你有没有注意到在乒乓球、排球等体育比赛中,如何确定由哪一方先发球?你觉得对比赛双方公平吗?结论:在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的.这就是说,游戏是否公平只要看每人获胜的概率是否相等.P115探究某中学从高一年级12个班中选2班代表学校参加某项活动。一班必须参加,另从2到12班选一个班。有人提议用以下方法选:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?3、决策中的概率思想P116思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为什么?阅读课文P116极大似然法的思想:如果我们面临的是从多个可选答案中挑选正确答案的决策任务,“使得样本出现的可能性最大”可以作为决策的准则.这种判断问题的方法称为极大似然法,极大似然法是统计工作中最重要的统计思想方法之一.4、天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。你认为下面两个解释中哪一个能代表气象局的观点?(1)明天本地有70%的区域下雨,30%的区域不下雨;(2)明天本地下雨的机会是70%。例如,如果天气预报说“明天降水的概率为90%”呢?降水概率的大小只能说明降水可能性的大小,概率值越大只能表示在一次试验中发生的可能性越大。在一次试验中“降水”这个事件是否发生仍然是随机的。尽管明天下雨的可能性很大,但由于“明天下雨”是随机事件,因此仍然有可能不下雨。5、遗传机理中的统计规律阅读课文P117孟德尔(GregorMendel,1822-1884)孟德尔是现代遗传学之父,是这一门重要生物学科的奠基人。1865年发现遗传定律。豌豆杂交试验孟德尔把黄色和绿色的豌豆杂交,第一年收获的豌豆是黄色的。第二年,当他把第一年收获的黄色豌豆再种下时,收获的豌豆既有黄色的又有绿色的。类似地,他把圆形和皱皮豌豆杂交,第一年收获的都是圆形豌豆,连一粒皱皮豌豆都没有。第二年,当他把这种杂交圆形再种下时,得到的却既有圆形豌豆,又有皱皮豌豆。(1)试验与发现(2)遗传机理中的统计规律阅读课文P117-118yyYYYYYyYyYyYy亲本第一代第二代其中Y为显性因子,y为隐性因子yyYYyy第一代Yy第二代YYYyyyY是显形因子y是隐性因子结论:由数学分析知道了上述结果的必然性.进而可以有意识地利用此结论指导实践.显然黄色豌豆(YY,Yy):绿色豌豆(yy)3:1。分离律:基因不融合,而是各自分开;如果双亲都是杂种,后代以3:1(显性:隐性)的比例分离。P118自我评价与课堂练习:1、在乒乓球、排球等比赛中,裁判员还用哪些方法决定谁先发球?这些方法公平吗?2、“一个骰子掷一次的概率是,这说明一个骰子掷6次会出现一次2”,这种说法对吗?61P118自我评价与课堂练习:1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件B.随机事件C.不可能事件D.无法确定2.下列说法正确的是()A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对BCP118自我评价与课堂练习:3.某篮球运动员,在同一条件下进行投篮练习,结果如下表如示。(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?投篮次数405060100200240300进球次数m30404885166192228进球频率0.750.80.80.850.80.80.76.0.8课堂小结1、正确理解概率的意义。2、概率与频率的区别与联系;3、概率是一门研究现实世界中广泛存在的随机现象的科学,正确认识生活中有关概率的实例的关键,是在学习过程中应有意识形培养概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。作业:1、大家课余时间分组搜集一些生活中经常用到的一些与概率相关的例子,然后用我们所学的概率知识去研究它们。2、P123习题3.1A组4预习:3.1.3概率的基本性质

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功