海量资源尽在星星文库:本资料来源于《七彩教育网》届高三文科数学第七次月考试题数学(文史类)命题:高三数学组审卷:高三数学组本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.参考公式:正棱锥、圆锥的侧面积公式如果事件A、B互斥,那么clS21锥侧P(A+B)=P(A)+P(B)如果事件A、B相互独立,那么其中,c表示底面周长、l表示斜高或P(A·B)=P(A)·P(B)母线长如果事件A在1次实验中发生的概率是球的体积公式P,那么n次独立重复实验中恰好发生k334RV球次的概率knkknnPPCkP)1()(其中R表示球的半径第I卷(共40分)1:若集合BAIBIA且,,,则下列集合运算结果为空集的是:A.ABCIB.BACIC.ABD.ACBCI12:在等差数列{}na中,若11a,832aa,则6S的值是A.18B.36C.72D.1443:已知条件p:x1,条件,q:x11,则p是q的()A.充要条件B.必要不充分条件C.充分不必要条件D.即非充分也非必要条件4:经过圆1)1(22yx的圆心C,且与直线0yx垂直的直线方程是()A.10xyB.10xyC.10xyD.10xy海量资源尽在星星文库::已知函数sinyx的图象向左平移2个单位后得到()yfx的图象,则()A.函数()yfx的最小正周期为4B.函数()yfx在区间),0(上是减函数C.点)0,0(是函数()yfx的图象的一个对称中心D.直线2x是函数()yfx的图象的一条对称轴6:二项式321()2nxx的展开式中含有非零常数项,则正整数n可取下列中的:A.3B.4C.5D.67:过抛物线xy42的焦点F的弦AB长为4,则弦AB的中点C到直线3x的距离为:A.1B.2C.3D.48:设[x]表示不超过x的最大整数,又设x,y满足方程组133315xyxy,如果x不是整数,那么yx的取值范围是A.)24,25(B.27,28C.26,28D.28,29第II卷二.填空题:本大题共7小题,每小题5分(第14题第一空2分,第二空3分,第15题第一空3分,第二空2分),共35分.把答案填在答题卡...中对应题号后的横线上.9:方程为:222yx的双曲线离心率为:10:为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为45,55,55,65,65,75,75,85,85,95由此得到频率分布直方图如下图,则这20名工人中一天生产该产品数量在65,45的人数大约是11:若两个向量a与b的夹角为,则称向量“ab”为“向量外积”,其长度|ab|=|a|•|b|•sin.今已知|a|=1,|b|=8,a•b=-4,则|ab|=海量资源尽在星星文库::关于x的不等式0422axax的解集为R,则实数a取值范围为13:如果把个位数是4,且恰有3个数字相同的四位数叫做“吉祥数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“吉祥数”共有__个.14:若实数yx,满足:),(6310yxA,yxyx点集则表示的区域的面积为xy的取值范围是15:如图,正方体ABCD—A1B1C1D1棱长为1,则A到平面BDA1的距离为,若P为线段BA1上一个动点,则的最小值为PCDP1三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16:(本小题满分12分)已知A、B、C为ΔABC的三个内角,)sin,(cosCBOM,)sin,(cosBCON.(Ⅰ)若21ONOM,求角A大小;(Ⅱ)若22MN,求A2sin.17:(本小题满分12分)如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点.(I)求证:EF∥平面SAD;海量资源尽在星星文库:(II)设SD=2CD=2,求二面角A-EF-D的大小.18:(本小题满分12分)某高校自主招生程序分为两轮:第一轮:推荐材料审核;第二轮分为笔试与面试。参加该校自主招生的学生只有通过第一轮推荐材料审核才有资格进入第二轮测试,否则被淘汰;在第二轮测试中若笔试与面试全部通过,则被确认为通过了自主招生考试;若仅通过了笔试而面试不通过,则被确认为通过自主招生的可能性为53;若仅通过面试而笔试不通过,则被确认为通过自主招生的可能性为51;两者均不通过,则淘汰。现知有一报考该校自主招生的学生在推荐材料审核,笔试,面试这三环节中通过的概率分别为322154、、,假设各环节之间互不影响.试求:(1)该生通过了第一轮及第二轮中的笔试却未通过该校自主招生的概率.(2)该生未通过自主招生的概率.海量资源尽在星星文库:(本小题满分13分)已知数列na中,11a,其前n项和nS满足:)2(21nnSSnn(1)求na的通项na;(2)令12nnnnaab,数列nb前项的和为nS,求证:1nS20:(本小题满分13分)设函数axxxxf2331)(,bxxxg32)(2,当3x时,)(xf取得极值.⑴求)(xf在4,0上的最大值与最小值.⑵试讨论方程:)()(xgxf解的个数.海量资源尽在星星文库::(本小题满分13分)已知椭圆E中心在坐标原点,焦点在坐标轴上,且经过(2,0)A、(2,0)B、31,2C三点.过椭圆的右焦点F任做一与坐标轴不平行的直线l与椭圆E交于M、N两点,AM与BN所在的直线交于点Q.(1)求椭圆E的方程:(2)是否存在这样直线m,使得点Q恒在直线m上移动?若存在,求出直线m方程,若不存在,请说明理由.ABOMNQF海量资源尽在星星文库:卷(共40分)1.A2.B3.C4.C5.B6.C7.D8.B9.210、1211、3412、04/aa13、1214、2137,2315、336三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16、(本小题满分12分)解:(1):)cos(sinsincoscosCBCBCBONOM------------------(2分)21)cos())(cos(cosCBCBA----------------------------(4分)3A--------------------------------------------------------------------------------(6分)(2):CBBCMNsinsin,coscos------------------------------------------(7分)21)cos(22)sin(sin)cos(cos222CBCBBCMN---(8分)-43cos43)cos(ACB-----------------------(9分)471691sinA---------------------------------------------------(10分)873)43(472cossin22sinAAA----------------------------(12分)17、(本小题满分12分)解一:(Ⅰ)作FG∥DC交SD于点G,则G为SD的中点.连结AG,12FGCD∥,·········································································(2分)又CDAB∥,故FGAE∥,AEFG为平行四边形.··················(4分)EF∥AG,又AG面SAD,EF面SAD.所以EF∥面SAD.·············(6分)(Ⅱ)不妨设DC=2,则SD=4,DG=2,ADG为等腰直角三角形.取AG中点H,连结DH,则DHAG.又AB平面SAD,所以ABDH,而AB∩AG=A,所以DH面AEF.································(7海量资源尽在星星文库:分)取EF中点M,连结MH,则HMEF.·············································································(8分)连结DM,则DMEF.故∠DMH为二面角A-EF-D的平面角,········································(9分)tan∠DMH=DHHM=21=2.·······················································································(11分)所以二面角A-EF-D的大小为arctan2··········································································(12分)解二:(Ⅰ)如图,建立空间直角坐标系D-xyz.··············································(1分)设A(a,0,0),S(0,0,b),则(a,a,0),C(0,a,0),E(a,2a,0),F(0,2a,2b),EF=(-a,0,2b).取SD的中点G(0,0,2b),则AG=(-a,0,2b).·························································(4分)EF=AG,所以EF∥AG,又AG面SAD,EF面SAD.所以EF∥面SAD················(6分)(Ⅱ)不妨设A(1,0,0),则B(1,1,0),C0,1,0),S(0,0,2),E(1,12,0),F(0,12,1).EF中点M(12,12,12),····································································································(7分)MD=(-12,-12,-12),EF=(-1,0,1),MD·EF=0,MDEF·······························(8分)又EA=(0,-12,0),EA·EF=0,EAEF所以向量MD和EA的夹角等于二面角A-EF-D的平面角·······················································································································(9分)又海量资源尽在星星文库:=MDEAMDEA=33.·······································································(11分)所以二面角A-EF-D的大小为arccos33.······························································(12分)18、(本小题满分12分)解:设A,B,C分别表示通过推荐材料审核,笔试与