2013届人教A版理科数学课时试题及解析57排列组合A高中数学练习试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1课时作业(五十七)A[第57讲排列、组合][时间:35分钟分值:80分]基础热身1.a∈N*,且a20,则(27-a)(28-a)…(34-a)等于()A.A827-aB.A27-a34-aC.A734-aD.A834-a2.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法的种数为()A.1260B.4060C.1140D.28003.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为()A.16B.18C.24D.324.一天有语文、数学、英语、物理、化学、生物、体育七节课,体育不在第一节上,数学不在第六、七节上,这天课表的不同排法种数为()A.A77-A55B.A24A55C.A15A16A55D.A66+A14A15A55能力提升5.用1、2、3、4、5、6组成一个无重复数字的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法种数为()A.18B.108C.216D.4326.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85B.56C.49D.287.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.6488.研究性学习小组有4名同学要在同一天上、下午到实验室做A,B,C,D,E五个操作实验,每个同学上、下午各做一个实验,且不重复,若上午不能做D实验,下午不能做E实验,则不同的安排方式共有()A.144种B.192种C.216种D.264种9.2010年上海世博会某国将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品不同的方案有________种(用数字作答).10.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求男、女医生都有,则不同的组队方案共有________种(数字回答).11.由0,1,2,…,9这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为________个.12.(13分)有六名同学按下列方法和要求分组,各有不同的分组方法多少种?(1)分成三个组,各组人数分别为1、2、3;(2)分成三个组去参加三项不同的试验,各组人数分别为1、2、3;(3)分成三个组,各组人数分别为2、2、2;(4)分成三个组去参加三项不同的试验,各组人数分别为2、2、2;(5)分成四个组,各组人数分别为1,1,2,2;(6)分成四个组去参加四项不同的活动,各组人数分别为1、1、2、2.2难点突破13.(12分)从射击、乒乓球、跳水、田径四个大项的北京奥运冠军中选出10名作“夺冠之路”的励志报告.(1)若每个大项中至少选派两人,则名额分配有几种情况?(2)若将10名冠军分配到11个院校中的9个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?3课时作业(五十七)A【基础热身】1.D[解析]A834-a=(27-a)(28-a)…(34-a).2.D[解析]基本事件总数是C330,其中不符合要求的基本事件个数是C320+C310,故所求的种数为C330-(C320+C310=2800.3.C[解析]四个车位连在一起有四种可能,再乘以3的全排列,即4×A33=24.4.D[解析]若数学课在第一节,则有排法A66种;若数学不在第一节,则数学课排法有A14,体育课排法有A15,其余课排法有A55,根据乘法原理此时的排法是A14A15A55.根据加法原理,总的排法种数为A66+A14A15A55.【能力提升】5.D[解析]第一步,先将1、3、5分成两组,共C23A22种方法;第二步,将2、4、6排成一排,共A33种方法;第三步:将两组奇数插入三个偶数形成的四个空位,共A24种方法.由乘法原理,共有C23A22A33A24=3×2×6×12=432种排法.6.C[解析]方法1:由条件可分为两类:一类是甲、乙两人只有一个入选,选法有C12·C27=42;另一类是甲、乙都入选,选法有C22·C17=7.所以共有42+7=49种选法.故选C.方法2:甲、乙均不入选的有C37种,总数是C39,故甲、乙至少一人入选的方法数是C39-C37=84-35=49.7.B[解析]当0排在个位时,有A29=9×8=72个;0不排在个位时,有A14·A18·A18=4×8×8=256个.由分类计数原理,得符合题意的偶数共有72+256=328个.故选B.8.D[解析]根据题意得,上午要做的实验是A,B,C,E,下午要做的实验是A,B,C,D,且上午做了A,B,C实验的同学下午不再做相同的实验.先安排上午,从4位同学中任选一人做E实验,其余三人分别做A,B,C实验,有C14·A33=24种安排方式.再安排下午,分两类:①上午就选E实验的同学下午选D实验,另三位同学对A,B,C实验错位排列,有2种方法,则不同的安排方式有N1=1×2=2种;②上午选E实验的同学下午选A,B,C实验之一,另外三位从剩下的两项和D一共三项中选,但必须与上午的实验项目错开,有3种方法,则不同的安排方式有N2=C13·3=9种.于是,不同的安排方式共有N=24×(2+9)=264种.故选D.9.24[解析]把需要相邻的两个元素看做一个整体,然后与不相邻的元素外的元素进行排列,在隔出的空位上安排需要不相邻的元素.2件书法作做看作一个整体,方法数是A22=2,把这个整体与标志性建筑作品排列,有A22种排列方法,其中隔开了三个空位,在其中插入2件绘画作品,有方法数A23=6.根据乘法原理,共有方法数2×2×6=24(种).10.70[解析]分1名男医生2名女医生、2名男医生1名女医生两种情况,或者用间接法.直接法:C15C24+C25C14=70.间接法:C39-C35-C34=70.11.210[解析]如果个位数和百位数是0,8,则方法数是A22A28=112;如果个位数和百位数是1,9,则由于首位不能排0,则方法数是A22C17C17=98.故总数是112+98=210.12.[解答](1)即C16C25C33=60.(2)即C16C25C33A33=60×6=360.(3)即C26C24C22A33=15.(4)即C26C24C22=90.(5)即C16C15A22·C24C22A22=45.(6)C16C15C24C22=180.【难点突破】13.[解答](1)名额分配只与人数有关,与不同的人无关.每大项中选派两人,则还剩余两个名额,当剩余两人出自同一大项时,名额分配情况有C14=4种,当剩余两人出自不同大项时,名额分配情况有C24=6种.4∴有C14+C24=10种.(2)从11个院校中选9个,再从10个冠军中任取2个组合,再进行排列,有C911C210A99=898128000.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功