2013届人教A版理科数学课时试题及解析57排列组合B高中数学练习试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1课时作业(五十七)B[第57讲排列、组合][时间:35分钟分值:80分]基础热身1.由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{an},则a19=()A.2014B.2034C.1432D.14302.有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法种数是()A.1136B.1600C.2736D.11203.某学校有教职工100人,其中教师80人,职员20人.现从中选取10人组成一个考察团外出学习考察,则这10人中恰好有8名教师的不同选法的种数是()A.C280C820B.A280A820C.A880C220D.C880C2204.某外商计划在5个候选城市投资3个不同的项目,且在同一城市投资项目不超过2个,则他不同的投资方案有()A.60种B.70种C.100种D.120种能力提升5.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定,每位同学选修三门,则每位同学不同的选修方案种数是()A.120B.98C.63D.566.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有()A.252个B.300个C.324个D.228个7.2011年,哈三中派出5名优秀教师去大兴安岭地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有()A.80种B.90种C.120种D.150种8.某校高三师生为“庆元旦·迎新年”举行了一次联欢晚会,高三年级8个班中每个班的学生准备了一个节目,且节目单已排好.节目开演前又增加了3个教师的节目,其中有2个独唱节目,1个朗诵节目,如果将这3个节目插入原节目单中,要求教师的节目不排在第一个和最后一个,并且教师的2个独唱节目不连续演出,那么不同的排法有()A.294种B.308种C.378种D.392种9.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的总数为________(用数字作答).10.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答).11.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有________种.12.(13分)一次数学考试的第一大题有11道小题,其中第(1)~(6)小题是代数题,答对一题得3分;第(7)~(11)题是几何题,答对一题得2分.某同学第一大题对6题,且所得分数不少于本题总分的一半,问该同学有多少种答题的不同情况?难点突破213.(12分)(1)10个优秀指标名额分配给6个班级,每个班至少一个,共有多少种不同的分配方法?(2)在正方体的过任意两个顶点的所有直线中,异面直线有多少对?3课时作业(五十七)B【基础热身】1.A[解析]千位是1的四位偶数有C13A23=18,故第19个是千位数字为2的四位偶数中最小的一个,即2014.2.A[解析]方法一:将“至少有1个是一等品的不同取法”分三类:“恰有1个一等品”,“恰有2个一等品”,“恰有3个一等品”,由分类计数原理有:C116C24+C216C14+C316=1136(种).方法二:考虑其对立事件:“3个都是二等品”,用间接法:C320-C34=1136(种).3.D[解析]由于结果只与选出的是哪8名教师和哪两名职员有关,与顺序无关,是组合问题.分步计数,先选8名教师再选2名职员,共有C880C220种选法.4.D[解析]在五个城市中的三个城市各投资一个,有方法数A35=60,将三个项目分为两组投资到五个城市中的两个,有方法数C13A25=60,故不同的投资方案有120种.【能力提升】5.B[解析]分两类:(1)不包含A,B,C的有C37种选法;(2)包含A,B,C的有C27·C13种选法.所以共有C37+C27·C13=98(种)选法,故应选B.6.B[解析](1)若仅仅含有数字0,则选法是C23C14,可以组成四位数C23C14A33=12×6=72个;(2)若仅仅含有数字5,则选法是C13C24,可以组成四位数C13C24A33=18×6=108个;(3)若既含数字0,又含数字5,选法是C13C14,排法是若0在个位,有A33=6种,若5在个位,有2×A22=4种,故可以组成四位数C13C14(6+4)=120个.根据加法原理,共有72+108+120=300个.7.D[解析]分组法是(1,1,3),(1,2,2),共有C15C14C33A22+C15C24C22A22=25,再分配,乘以A33,即得总数150.8.D[解析]根据题意可将教师的1个朗诵节目排在学生的8个节目中的7个空中的任一个,共有7种排法,然后将教师的2个独唱节目排在9个节目中的8个空中的2个空中,故共有C17A28=392种不同的排法.故选D.9.8[解析]总的分法是C14+C24A22A22=14,若仅仅甲、乙分到一个班级,则分法是A22=2,若甲、乙分到同一个班级且这个班级分到3名学生,则分法是C12A22=4,故总数是14-2-4=8.10.72[解析]甲、乙住在同一个房间,此时只能把另外三人分为两组,这时的方法总数是C13A33=18,而总的分配方法数是把五人分为三组再进行分配,方法数是C15C24C22A22A33=90,故不同的住宿安排共有90-18=72种.11.222[解析]总数是C223=253,若有两个学校名额相同,则可能是1,2,3,4,5,6,7,9,10,11个名额,此时有10C23=30种可能,若三个学校名额相同,即都是8个名额,则只有1种情况,故不同的分配方法数是253-30-1=222.12.[解答]依题意可知本题的总分的一半是14分,某同学在11题中答对了6题,则至少答对两道代数题,至多答对4道几何题,因此有如下答题的情况:(1)代数题恰好对2道,几何题恰好对4道,此时有C26C45=75种情况;(2)代数题恰好对3道,几何题恰好对3道,此时有C36C35=200种情况;(3)代数题恰好对4道,几何题恰好对2道,此时有C46C25=150种情况;(4)代数题恰好对5道,几何题仅对1道,此时有C56C15=30种情况;(5)代数题全对,几何题全错,此时有C66C05=1种情况.由分类计数原理得所有可能的答题情况有456种.【难点突破】13.[解答](1)由于是10个名额,故名额和名额之间是没有区别的,我们不妨把这10个名额在桌面上从左到右一字摆开,这样在相邻的两个名额之间就出现了一个空挡,10个名额之间就出现了9个空挡,我们的目的是把这10个名额分成6份,每份至少一个,那我们只要把这9个空挡中的5个空挡上各放上一个隔板,两端的隔板外面的2部分,隔板和隔4板之间的4部分,这样就把这10个指标从左到右分成了6份,且满足每份至少一个名额,我们把从左到右的6份依次给1,2,3,4,5,6班就解决问题了.这里的在9个空挡上放5个隔板的不同方法数,就对应了符合要求的名额分配方法数.这个数不难计算,那就是从9个空挡中选出5个空挡放隔板,不同的放法种数是C59=126.(2)方法一:连成两条异面直线需要4个点,因此在正方体8个顶点中任取4个点有C48种取法.每4个点可分共面和不共面两种情况,共面的不符合条件,去掉.因为在6个表面和6个体对角面中都有四点共面,故有(C48-12)种.不共面的4点可构成四面体,而每个四面体有3对异面直线,故共有3(C48-12)=174对.方法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有C228种情况,除去其中共面的情况:(1)6个表面,每个面上有6条线共面,共有6C26条;(2)6个体对角面,每个面上也有6条线共面,共有6C26条;(3)从同一顶点出发有3条面对角线,任意两条线都共面,共有8C23条,故共有异面直线C228-6C26-6C26-8C23=174对.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功