海量资源尽在星星文库:年普通高等学校招生全国统一考试文科数学答案第Ⅰ卷一.选择题(1)【答案】D(2)【答案】C(3)【答案】A(4)【答案】A(5)【答案】D(6)【答案】A(7)【答案】C(8)【答案】B(9)【答案】C(10)【答案】D(11)【答案】B(12)【答案】B二.填空题(13)【答案】6(14)【答案】5(15)【答案】2113(16)【答案】1和3三、解答题(17)(本小题满分12分)【答案】(Ⅰ)235nna;(Ⅱ)24.【解析】试题分析:(Ⅰ)根据等差数列的性质求1a,d,从而求得na;(Ⅱ)根据已知条件求nb,再求数列nb的前10项和.试题解析:(Ⅰ)设数列na的公差为d,学.科网由题意有11254,53adad,解得121,5ad,所以na的通项公式为235nna.(Ⅱ)由(Ⅰ)知235nnb,当n=1,2,3时,2312,15nnb;当n=4,5时,2323,25nnb;当n=6,7,8时,2334,35nnb;海量资源尽在星星文库:=9,10时,2345,45nnb,所以数列nb的前10项和为1322334224.考点:等茶数列的性质,数列的求和.【结束】(18)(本小题满分12分)【答案】(Ⅰ)由6050200求P(A)的估计值;(Ⅱ)由3030200求P(B)的估计值;(III)根据平均值得计算公式求解.【解析】试题分析:试题解析:(Ⅰ)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200,故P(A)的估计值为0.55.(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,学.科网一年内出险次数大于1且小于4的频率为30300.3200,故P(B)的估计值为0.3.(Ⅲ)由题所求分布列为:保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查200名续保人的平均保费为0.850.300.251.250.151.50.151.750.3020.101.1925aaaaaaa,因此,续保人本年度平均保费估计值为1.1925a.考点:样本的频率、平均值的计算.【结束】(19)(本小题满分12分)【答案】(Ⅰ)详见解析;(Ⅱ)694.【解析】试题分析:(Ⅰ)证//.ACEF再证//.ACHD(Ⅱ)证明.ODOH再证OD平面.ABC海量资源尽在星星文库:最后呢五棱锥'ABCEFD体积.试题解析:(I)由已知得,,.ACBDADCD又由AECF得AECFADCD,故//.ACEF由此得,EFHDEFHD,所以//.ACHD.(II)由//EFAC得1.4OHAEDOAD由5,6ABAC得224.DOBOABAO所以1,3.OHDHDH于是22222(22)19,ODOHDH故.ODOH由(I)知ACHD,又,ACBDBDHDH,所以AC平面,BHD于是.ACOD又由,ODOHACOHO,所以,OD平面.ABC又由EFDHACDO得9.2EF五边形ABCFE的面积11969683.2224S所以五棱锥'ABCEFD体积16923222.342V考点:空间中的线面关系判断,几何体的体积.【结束】(20)(本小题满分12分)【答案】(Ⅰ)220.xy;(Ⅱ),2..【解析】试题分析:(Ⅰ)先求定义域,再求()fx,(1)f,(1)f,由直线方程得点斜式可求曲线()yfx在(1,(1))f处的切线方程为220.xy(Ⅱ)构造新函数(1)()ln1axgxxx,学.科网对实数a分类讨论,用导数法求解.试题解析:(I)()fx的定义域为(0,).当4a时,海量资源尽在星星文库:()(1)ln4(1),()ln3fxxxxfxxx,(1)2,(1)0.ff曲线()yfx在(1,(1))f处的切线方程为220.xy(II)当(1,)x时,()0fx等价于(1)ln0.1axxx令(1)()ln1axgxxx,则222122(1)1(),(1)0(1)(1)axaxgxgxxxx,(i)当2a,(1,)x时,222(1)1210xaxxx,故()0,()gxgx在(1,)x上单调递增,因此()0gx;(ii)当2a时,令()0gx得22121(1)1,1(1)1xaaxaa,由21x和121xx得11x,故当2(1,)xx时,()0gx,()gx在2(1,)xx单调递减,学.科网因此()0gx.综上,a的取值范围是,2.考点:导数的几何意义,函数的单调性.【结束】(21)(本小题满分12分)【答案】(Ⅰ)14449;(Ⅱ)32,2.【解析】试题分析:(Ⅰ)先求直线AM的方程,再求点M的纵坐标,最后求AMN的面积;(Ⅱ)设11,Mxy,,将直线AM的方程与椭圆方程组成方程组,消去y,用k表示1x,从而表示||AM,同理用k表示||AN,再由2AMAN求k.试题解析:(Ⅰ)设11(,)Mxy,则由题意知10y.由已知及椭圆的对称性知,直线AM的倾斜角为4,海量资源尽在星星文库:又(2,0)A,因此直线AM的方程为2yx.将2xy代入22143xy得27120yy,解得0y或127y,所以1127y.因此AMN的面积11212144227749AMNS.(2)将直线AM的方程(2)(0)ykxk代入22143xy得2222(34)1616120kxkxk.由2121612(2)34kxk得2122(34)34kxk,故2212121||1|2|34kAMkxk.由题设,直线AN的方程为1(2)yxk,故同理可得22121||43kkANk.由2||||AMAN得2223443kkk,即3246380kkk.设32()4638ftttt,则k是()ft的零点,22'()121233(21)0ftttt,所以()ft在(0,)单调递增,又(3)153260,(2)60ff,因此()ft在(0,)有唯一的零点,且零点k在(3,2)内,所以32k.考点:椭圆的性质,直线与椭圆的位置关系.【结束】请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲【答案】(Ⅰ)详见解析;(Ⅱ)12.【解析】试题分析:(Ⅰ)证,DGFCBF再证,,,BCGF四点共圆;(Ⅱ)证明,RtBCGRtBFG四边形BCGF的面积S是GCB面积GCBS的2倍.海量资源尽在星星文库:试题解析:(I)因为DFEC,所以,DEFCDF则有,,DFDEDGGDFDEFFCBCFCDCB所以,DGFCBF由此可得,DGFCBF由此0180,CGFCBF所以,,,BCGF四点共圆.(II)由,,,BCGF四点共圆,CGCB知FGFB,连结GB,由G为RtDFC斜边CD的中点,知GFGC,故,RtBCGRtBFG因此四边形BCGF的面积S是GCB面积GCBS的2倍,即111221.222GCBSS考点:三角形相似、全等,四点共圆【结束】(23)(本小题满分10分)选修4—4:坐标系与参数方程【答案】(Ⅰ)212cos110;(Ⅱ)153.【解析】试题分析:(I)利用222xy,cosx可得C的极坐标方程;(II)先将直线l的参数方程化为普通方程,学.科网再利用弦长公式可得l的斜率.试题解析:(I)由cos,sinxy可得C的极坐标方程212cos110.(II)在(I)中建立的极坐标系中,直线l的极坐标方程为()R由,AB所对应的极径分别为12,,将l的极坐标方程代入C的极坐标方程得海量资源尽在星星文库:于是121212cos,11,22121212||||()4144cos44,AB由||10AB得2315cos,tan83,所以l的斜率为153或153.考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式.【结束】(24)(本小题满分10分)选修4—5:不等式选讲【答案】(Ⅰ){|11}Mxx;(Ⅱ)详见解析.【解析】试题分析:(I)先去掉绝对值,再分12x,1122x和12x三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当a,b时,1abab.试题解析:(I)12,,211()1,,2212,.2xxfxxxx当12x时,由()2fx得22,x解得1x;当1122x时,()2fx;当12x时,学.科网由()2fx得22,x解得1x.所以()2fx的解集{|11}Mxx.(II)由(I)知,当,abM时,11,11ab,从而海量资源尽在星星文库:()(1)1(1)(1)0ababababab,因此|||1|.abab考点:绝对值不等式,不等式的证明.【结束】更多2016高考信息查询(在文字上按住ctrl即可点击查看)2016年高考作文题目及点评2016年全国高考真题及答案2016年高考成绩查询入口2016年全国各地各批次控制分数线2016年全国高校最低录取分数线※【高考帮APP出品】2016高考一站式解决方案