《导数的概念》第一课时的教学反思6

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1《导数的概念》第一课时的教学反思陈吾婷在备《导数的概念》第一课时,对课本内容作了一定的调整,设计了这样的过程:由芝诺著名的一个悖论“飞矢不动”引入,然后利用瞬时速度来解释飞矢在某一点的速度是存在的,然后再转到曲线切线的讨论上来。应该说,这样的思路很自然,也很有趣。但是在第一节课实际的实施过程中,出现一些问题,使得学生在芝诺悖论之后,就慢慢地变成了“无声”的状态,这主要是一些推导中复杂的符号使然。第一节下课后,很快地做了一个反思,总结了如下几点:1.在推导瞬时速度时,应该先讲清楚牛顿的思路,即求位移的增量,求平均速度,再求极限。这样再进行推导,学生就有了方向,而不会象第一节课那样,听得慢,看着复杂的符号就头晕。在学习理论中,有个“先行组织者”的概念,“先行组织者”是先于学习任务本身呈现的一种引导性材料,它要比原学习任务本身有更高的抽象、概括和包容水平,并且能清晰地与认知结构中原有的观念和新的学习任务关联。可能在对于这样牵涉到复杂符号的推导时,更需要有这样的一个前提准备。要不然学生就弄不清方向,从而被符号所困。2.也是在推导瞬时速度时,应该做一个图解,使学生更清楚地看到增量的意义。第一节课正是没有给出图解,虽然对增量做了一定的强调,但是学生对增量的理解依然是抽象而非具体的。3.推导完瞬时速度后,应该点出对“飞矢不动”悖论的反驳,即在某一点是有速度的。第一节课中忘了说明这一点了,就使得学生不知道“飞矢不动”这个情境有什么用,也不知道与瞬时速度有什么联系。4.在介绍完曲线的切线后,给出一个很好的例子,即y=|x|在x=0处有没有切线,可以先增加另一个变式——求x=1处的切线,这会使学生认识得更深刻一点。最后最好能指出正如某一点的瞬时速度只有一个一样,某一点的切线也应该只有一条。经过课间几分钟的反思与调整,第二节课果然清晰了许多,也生动了许多。学生听得也饶有兴致。课后,有两个学生也分别提出了两个很好的问题。第一个问题是在刚才这一例子中,没有斜率难道就没有切线吗?第二个问题是如果切线垂直于x轴,按导数的解释,如果斜率无穷大——即以前通常所说的极限不存在,那么切线不是也不存在吗?当时给出了这样的解释:导数不存在,切线就不存在;导数无穷大实际上还是存在的,只不过是无穷大,而上面的例子中的在x=0的导数是真的不存在,这是有区别的。回家路上想了一下,并不敢保证这样的解释的正确性,尤其是导数不存在,切线就不存在。到家一查,同济大学应用数学系主编的《高等数学》(第五版上册)第82页中就有切线的定义,包括了导数无穷大时的切线情况,在第85页中就有y=|x|在x=0处切线不存在的例子。放心了!但是依然在思考的一个问题是:怎样才能更加直观地说明上例中的切线不存在呢?它又哪里去了呢?

1 / 1
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功