人教a版数学选修11作业14全称量词与存在量词含答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

§1.4全称量词与存在量词课时目标1.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.2.会判定全称命题和特称命题的真假.3.能正确的对含有一个量词的命题进行否定.4.知道全称命题的否定是特称命题,特称命题的否定是全称命题.1.全称量词和全称命题(1)短语“______________”“____________”在逻辑中通常叫做全称量词,并用符号“______”表示,常见的全称量词还有“对一切”“对每一个”“任给”“所有的”等.(2)含有______________的命题,叫做全称命题.(3)全称命题:“对M中任意一个x,有p(x)成立”,可用符号简记为____________.2.存在量词和特称命题(1)短语“______________”“________________”在逻辑中通常叫做存在量词,并用符号“________”表示,常见的存在量词还有“有些”“有一个”“对某个”“有的”等.(2)含有______________的命题,叫做特称命题.(3)特称命题:“存在M中的一个x0,有p(x0)成立”,可用符号简记为____________.3.含有一个量词的命题的否定(1)全称命题p:∀x∈M,p(x),它的否定綈p:____________;(2)特称命题p:∃x0∈M,p(x0),它的否定綈p:____________.4.命题的否定与否命题命题的否定只否定________,否命题既否定______,又否定________.一、选择题1.下列语句不是全称命题的是()A.任何一个实数乘以零都等于零B.自然数都是正整数C.高二(一)班绝大多数同学是团员D.每一个向量都有大小2.下列命题是特称命题的是()A.偶函数的图象关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是平行直线D.存在实数大于等于33.下列是全称命题且是真命题的是()A.∀x∈R,x20B.∀x∈Q,x2∈QC.∃x0∈Z,x201D.∀x,y∈R,x2+y204.下列四个命题中,既是特称命题又是真命题的是()A.斜三角形的内角是锐角或钝角B.至少有一个实数x0,使x200C.任一无理数的平方必是无理数D.存在一个负数x0,使1x025.已知命题p:∀x∈R,sinx≤1,则()A.綈p:∃x0∈R,sinx0≥1B.綈p:∀x∈R,sinx≥1C.綈p:∃x0∈R,sinx01D.綈p:∀x∈R,sinx16.“存在整数m0,n0,使得m20=n20+2011”的否定是()A.任意整数m,n,使得m2=n2+2011B.存在整数m0,n0,使得m20≠n20+2011C.任意整数m,n,使得m2≠n2+2011D.以上都不对题号123456答案二、填空题7.命题“有些负数满足不等式(1+x)(1-9x)0”用“∃”或“∀”可表述为________________.8.写出命题:“对任意实数m,关于x的方程x2+x+m=0有实根”的否定为:________________________________________________________________________.9.下列四个命题:①∀x∈R,x2+2x+30;②若命题“p∧q”为真命题,则命题p、q都是真命题;③若p是綈q的充分而不必要条件,则綈p是q的必要而不充分条件.其中真命题的序号为________.(将符合条件的命题序号全填上)三、解答题10.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假.(1)若a0,且a≠1,则对任意实数x,ax0.(2)对任意实数x1,x2,若x1x2,则tanx1tanx2.(3)∃T0∈R,使|sin(x+T0)|=|sinx|.(4)∃x0∈R,使x20+10.11.写出下列命题的否定,并判断其真假.(1)有些质数是奇数;(2)所有二次函数的图象都开口向上;(3)∃x0∈Q,x20=5;(4)不论m取何实数,方程x2+2x-m=0都有实数根.能力提升12.命题“对任何x∈R,|x-2|+|x-4|3”的否定是____________________________.13.给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.1.判定一个命题是全称命题还是特称命题时,主要方法是看命题中是否含有全称量词或存在量词,要注意的是有些全称命题中并不含有全称量词,这时我们就要根据命题所涉及的意义去判断.2.要判定一个全称命题是真命题,必须对限定集合M中的每一个元素x验证p(x)成立;但要判定一个全称命题是假命题,却只需找出集合M中的一个x=x0,使得p(x0)不成立即可(这就是我们常说的“举出一个反例”).要判定一个特称命题为真命题,只要在限定集合M中,至少能找到一个x=x0,使得p(x0)成立即可;否则,这一特称命题就是假命题.3.全称命题的否定,其模式是固定的,即相应的全称量词变为存在量词,存在量词变为全称量词.具有性质p变为具有性质綈p.全称命题的否定是特称命题,特称命题的否定是全称命题.§1.4全称量词与存在量词答案知识梳理1.(1)对所有的对任意一个∀(2)全称量词(3)∀x∈M,p(x)2.(1)存在一个至少有一个∃(2)存在量词(3)∃x0∈M,p(x0)3.(1)∃x0∈M,綈p(x0)(2)∀x∈M,綈p(x)4.结论结论条件作业设计1.C[“高二(一)班绝大多数同学是团员”,即“高二(一)班有的同学不是团员”,是特称命题.]2.D[“存在”是存在量词.]3.B[A、B、D中命题均为全称命题,但A、D中命题是假命题.]4.B5.C[全称命题的否定是特称命题,应含存在量词.]6.C[特称命题的否定是全称命题,应含全称量词.]7.∃x00,使(1+x0)(1-9x0)08.存在实数m,关于x的方程x2+x+m=0没有实根9.①②③10.解(1)(2)是全称命题,(3)(4)是特称命题.(1)∵ax0(a0,a≠1)恒成立,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1x2,但tan0=tanπ,∴命题(2)是假命题.(3)y=|sinx|是周期函数,π就是它的一个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+10,∴命题(4)是假命题.11.解(1)“有些质数是奇数”是特称命题,其否定为“所有质数都不是奇数”,假命题.(2)“所有二次函数的图象都开口向上”是全称命题,其否定为“有些二次函数的图象不是开口向上”,真命题.(3)“∃x0∈Q,x20=5”是特称命题,其否定为“∀x∈Q,x2≠5”,真命题.(4)“不论m取何实数,方程x2+2x-m=0都有实数根”是全称命题,其否定为“存在实数m,使得方程x2+2x-m=0没有实数根”,真命题.12.存在x∈R,使得|x-2|+|x-4|≤3解析全称命题的否定是特称命题,全称量词“任何”改为存在量词“存在”,并把结论否定.13.解甲命题为真时,Δ=(a-1)2-4a20,即a13或a-1.乙命题为真时,2a2-a1,即a1或a-12.(1)甲、乙至少有一个是真命题时,即上面两个范围取并集,∴a的取值范围是{a|a-12或a13}.(2)甲、乙有且只有一个是真命题,有两种情况:甲真乙假时,13a≤1,甲假乙真时,-1≤a-12,∴甲、乙中有且只有一个真命题时a的取值范围为{a|13a≤1或-1≤a-12}.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功