温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课后提升作业十六平面与平面垂直的性质(45分钟70分)一、选择题(每小题5分,共40分)1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β【解析】选D.因为m∥α,m∥β,α∩β=l,所以m∥l.因为AB∥l,所以AB∥m.故A一定正确.因为AC⊥l,m∥l,所以AC⊥m.从而B一定正确.因为A∈α,AB∥l,l⊂α,所以B∈α.所以AB⊄β,l⊂β.所以AB∥β.故C也正确.因为AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.2.(2015·安徽高考)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【解析】选D.选项具体分析结论A平面α,β垂直于同一个平面,则α,β相交或平行错误B直线m,n平行于同一个平面,则m与n平行、相交、异面错误C若α,β不平行,则在α内存在与β平行的直线,如α中平行于α与β交线的直线,则此直线也平行于平面β错误D若m,n垂直于同一个平面,则m∥n,其逆否命题即为选项D正确3.(2016·杭州高二检测)设α,β,γ是三个互不重合的平面,m,n是直线,给出下列命题:①α⊥β,β⊥γ,则α⊥γ;②若α∥β,m⊄β,m∥α,则m∥β;③若m,n在γ内的射影互相垂直,则m⊥n;④若m∥α,n∥β,α⊥β,则m⊥n,其中正确命题的个数为()A.0B.1C.2D.3【解析】选B.①:根据面面垂直的判定可知:①错误;②:根据线面平行的判定可知,②正确;③:如正方体ABCD-A1B1C1D1中,AB1与AD1在底面A1B1C1D1的射影互相垂直,而AB1与AD1的夹角为,③错误;④:m,n可能斜交,可能平行,可能异面,可能垂直,④错误,所以正确命题的个数为1个.4.如图所示,平面α⊥平面β,A∈α,B∈β,AB与两平面α,β所成的角分别为和,过A,B分别作两平面交线的垂线,垂足分别为A′,B′,则AB∶A′B′等于()A.2∶1B.3∶1C.3∶2D.4∶3【解题指南】利用面面垂直的性质定理找AB与两平面α,β所成的角,再利用直角三角形的知识表示出AB的值与A′B′的值,进而求出AB∶A′B′的值.【解析】选A.如图,由已知得AA′⊥平面β,∠ABA′=,BB′⊥平面α,∠BAB′=,设AB=a,则BA′=a,BB′=a,在Rt△BA′B′中,A′B′=a,所以=.【补偿训练】在三棱锥P-ABC中,平面PAC⊥平面ABC,∠PCA=90°,△ABC是边长为4的正三角形,PC=4,M是AB边上的一动点,则PM的最小值为()A.2B.2C.4D.4【解析】选B.连接CM,则由题意PC⊥平面ABC,可得PC⊥CM,所以PM=,要求PM的最小值只需求出CM的最小值即可,在△ABC中,当CM⊥AB时CM有最小值,此时有CM=4×=2,所以PM的最小值为2.5.线段AB的两端在直二面角α-l-β的两个面内,并与这两个面都成30°角,则异面直线AB与l所成的角是()A.30°B.45°C.60°D.75°【解题指南】过B作l的平行线BC,将直线l与AB所成角转化为AB与BC所成角.【解析】选B.设AB=a,在平面α内,作AA′⊥l于A′,则AA′⊥β,连A′B,则∠ABA′=30°.在Rt△AA′B中,AB=a,所以AA′=a.同理作BB′⊥l于B′,连AB′,则∠BAB′=30°,所以BB′=a,AB′=a,所以A′B′==a,过B作BCA′B′.连接A′C,则A′CBB′,连接AC,在Rt△AA′C中,AC==a.由BC⊥平面AA′C,所以△ABC为直角三角形,且AC=BC,所以∠ABC=45°,为l与AB所成角.6.(2016·菏泽高一检测)已知两条不重合的直线m,n和两个不重合的平面α,β,有下列命题:①若m⊥n,m⊥α,则n∥α;②若m⊥α,n⊥β,m∥n,则α∥β;③若m,n是两条异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确命题的个数是()A.1B.2C.3D.4【解析】选C.①若m⊥n,m⊥α,则n∥α或n⊂α,故①错误;②因为m⊥α,m∥n,所以n⊥α,又n⊥β,则α∥β,故②正确;③过直线m作平面γ交平面β于直线c,因为m,n是两条异面直线,所以设n∩c=O;因为m∥β,m⊂γ,γ∩β=c,所以m∥c;因为m⊂α,c⊄α,所以c∥α,因为n⊂β,c⊂β,n∩c=O,c∥α,n∥α,所以α∥β,故③正确;④由面面垂直的性质定理:因为α⊥β,α∩β=m,n⊂β,n⊥m,所以n⊥α,故④正确.7.如图所示,三棱锥P-ABC的底面在平面α内,且AC⊥PC,平面PAC⊥平面PBC,点P,A,B是定点,则动点C的轨迹是()A.一条线段B.一条直线C.一个圆D.一个圆,但要去掉两个点【解析】选D.因为平面PAC⊥平面PBC,AC⊥PC,平面PAC∩平面PBC=PC,AC⊂平面PAC,所以AC⊥平面PBC.又因为BC⊂平面PBC,所以AC⊥BC.所以∠ACB=90°.所以动点C的轨迹是以AB为直径的圆,除去A和B两点.8.(2015·浙江高考)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m【解析】选A.选项A中,由平面与平面垂直的判定,故正确;选项B中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;选项C中,l∥β时,α,β可以相交;选项D中,α∥β时,l,m也可以异面.【补偿训练】设α,β,γ为平面,l,m,n为直线,则能得到m⊥β的一个条件为()A.α⊥β,α∩β=l,m⊥lB.n⊥α,n⊥β,m⊥αC.α∩γ=m,α⊥γ,β⊥γD.α⊥γ,β⊥γ,m⊥α【解析】选B.如图①知A错;如图②知C错;如图③,在正方体中,两侧面α与β相交于l,都与底面γ垂直,γ内的直线m⊥α,但m与β不垂直,故D错;由n⊥α,n⊥β知α∥β,又m⊥α,故m⊥β,因此B正确.二、填空题(每小题5分,共10分)9.(2016·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.(1)A′C⊥BD.(2)∠BA′C=90°.(3)CA′与平面A′BD所成的角为30°.(4)四面体A′-BCD的体积为.【解析】若A′C⊥BD,又BD⊥CD,则BD⊥平面A′CD,则BD⊥A′D,显然不可能,故(1)错误.因为BA′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,所以BA′⊥A′C,所以∠BA′C=90°,故(2)正确.因为平面A′BD⊥平面BCD,BD⊥CD,所以CD⊥平面A′BD,CA′与平面A′BD所成的角为∠CA′D,因为A′D=CD,所以∠CA′D=,故(3)错误.四面体A′-BCD的体积为V=S△BDA′·h=××1=,因为AB=AD=1,DB=,所以A′C⊥BD,综上(2)(4)成立.答案:(2)(4)10.斜三棱柱ABC-A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1,则A1B=________.【解析】取CC1中点M,连A1M与BM,因为AA1=AC=BC=2,∠A1AC=∠C1CB=60°,所以△A1CC1是等边三角形,四边形ACC1A1≌四边形CBB1C1,所以A1M⊥CC1,BM⊥CC1,所以A1M=BM=.又平面ACC1A1⊥平面BCC1B1,所以∠A1MB为二面角的平面角,且∠A1MB=90°.所以A1B=.答案:三、解答题(每小题10分,共20分)11.如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=,AD=CD=1.(1)求证:BD⊥AA1.(2)在棱BC上取一点E,使得AE∥平面DCC1D1,求的值.【解题指南】(1)利用面面垂直的性质,证明BD⊥平面AA1C1C,可得BD⊥AA1.(2)点E为BC的中点,即=1,再证明AE∥DC,利用线面平行的判定,可得AE∥平面DCC1D1.【解析】(1)在四边形ABCD中,因为BA=BC,DA=DC,所以BD⊥AC,平面AA1C1C⊥平面ABCD,且平面ACC1A1∩平面ABCD=AC,BD⊂平面ABCD,所以BD⊥平面ACC1A1,又AA1⊂平面ACC1A1,所以BD⊥AA1.(2)点E为BC的中点,即=1,下面给予证明:在三角形ABC中,因为AB=AC,且E为BC的中点,所以AE⊥BC,又在四边形ABCD中,AB=BC=CA=,DA=DC=1,所以∠ACB=60°,∠ACD=30°,所以DC⊥BC,即平面ABCD中有AE∥DC.因为DC⊂平面DCC1D1,AE⊄平面DCC1D1,所以AE∥平面DCC1D1.12.(2016·重庆高二检测)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC.(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.【解析】(1)设AC=1,因为D为AA1的中点,AC=BC=AA1,所以AC=AD=A1D=A1C1=1,所以DC=DC1=,又CC1=2,所以DC2+D=C,所以C1D⊥DC,因为BC⊥AC,BC⊥C1C,AC∩C1C=C,所以BC⊥平面A1ACC1,C1D⊂平面A1ACC1,所以C1D⊥BC,因为DC∩BC=C,所以C1D⊥平面BDC,又C1D⊂平面BDC1,所以平面BDC1⊥平面BDC.(2)过C1作C1H⊥A1B1于H点,因为平面A1B1C1⊥平面ABB1A1,平面A1B1C1∩平面ABB1A1=A1B1,所以C1H⊥平面ABB1A1,由(1)知,在等腰Rt△A1B1C1中,C1H=,所以=·(A1D+BB1)·A1B1·C1H=,=·AC·BC·CC1=1,所以这两部分体积的比为1∶1.【能力挑战题】如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD,(1)证明:平面AEC⊥平面BED.(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为,求该三棱锥的侧面积.【解析】(1)因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE,又BD∩BE=B,故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=x,GB=GD=.因为AE⊥EC,所以在Rt△AEC中,可得EG=x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=x.由已知得,三棱锥E-ACD的体积VE-ACD=×AC·GD·BE=x3=.故x=2.从而可得AE=EC=ED=.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为.故三棱锥E-ACD的侧面积为3+2.关闭Word文档返回原板块