人教版高中数学必修二检测阶段通关训练二Word版含解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。阶段通关训练(二)(60分钟100分)一、选择题(每小题5分,共30分)1.(2016·吉安高二检测)下列说法中正确的是()A.三点确定一个平面B.两条直线确定一个平面C.两两相交的三条直线一定在同一平面内D.过同一点的三条直线不一定在同一平面内【解析】选D.选项A中,缺条件“不共线”;选项B中,须指明这两条直线的位置关系,比如两条异面直线就不能确定一个平面;选项C中,两两相交的三条直线当相交于同一点时,它们可以不在同一平面内,比如正方体中同一顶点的三条棱.2.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么()A.PA=PBPCB.PA=PBPCC.PA=PB=PCD.PA≠PB≠PC【解析】选C.因为M为AB的中点,△ACB为直角三角形,所以BM=AM=CM,又PM⊥平面ABC,所以Rt△PMB≌Rt△PMA≌Rt△PMC,故PA=PB=PC.3.(2016·成都高二检测)如图,已知三条长度相等的线段AB,BC,CD,若AB⊥BC,BC⊥CD,且直线AB与CD所成角大小为60°,则直线AD与BC所成角大小为()A.90°B.60°C.45°D.30°【解析】选C.如图,过B作BECD,连接DE,AE,则四边形BCDE为正方形,∠ABE为直线AB与CD所成角,∠ADE为直线AD与BC所成角.因为AB=BC=CD=BE,∠ABE=60°,所以AB=BE=AE.因为AB⊥BC,所以AB⊥DE,又BE⊥DE,AB∩BE=B,所以DE⊥平面ABE,所以DE⊥AE,所以△AED为等腰直角三角形,所以∠ADE=45°.【拓展延伸】求异面直线所成角的方法求异面直线所成角主要是如何通过平移作出其平面角,主要途径有:利用三角形的中位线、构造平行四边形、利用梯形两底平行、平行线分线段成比例的性质等,如本题通过利用条件中的垂直关系构造正方形,达到平移的目的.【补偿训练】(2016·台州高二检测)如图,在正方体ABCD-A1B1C1D1中,异面直线A1D与D1C所成的角为()A.30°B.45°C.60°D.90°【解析】选C.由题可知,在正方体ABCD-A1B1C1D1中,A1B∥D1C,所以异面直线A1D与D1C所成的角与直线A1D与A1B所成的角相等,连接A1B,BD,∠BA1D为所求角,设正方体的棱长为1,在△A1DB中,三条边长均为,故∠BA1D=60°.4.(2016·北京高二检测)已知直线m和平面α,β,则下列四个命题中正确的是()A.若α⊥β,m⊂β,则m⊥αB.若α∥β,m⊥α,则m⊥βC.若α∥β,m∥α,则m∥βD.若m∥α,m∥β,则α∥β【解析】选B.若α⊥β,m⊂β,则直线m与平面α相交,或直线m在平面α内,或直线m与平面α平行,所以选项A不正确;若α∥β,m∥α,则直线m与平面β平行,或直线m在平面β内,所以选项C不正确.若m∥α,m∥β,则α∥β或α与β相交,所以选项D不正确.5.(2016·辽宁师大附中高一检测)如图,六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,则下列结论不正确的是()A.CF⊥平面PADB.DF⊥平面PAFC.CF∥平面PABD.CD∥平面PAF【解析】选A.因为六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.则AF∥CD,由线面平行的判定定理,可得CD∥平面PAF,故D正确;DF⊥AF,DF⊥PA,由线面垂直的判定定理可得DF⊥平面PAF,故B正确;CF∥AB,由线面平行的判定定理,可得CF∥平面PAB,故C正确;CF与AD不垂直,故A中,CF⊥平面PAD不正确.6.已知矩形ABCD,AB=1,BC=,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【解析】选B.A错误.理由如下:过A作AE⊥BD,垂足为E,连接CE,若直线AC与直线BD垂直,则可得BD⊥平面ACE,于是BD⊥CE,而由矩形ABCD边长的关系可知BD与CE并不垂直.所以直线AC与直线BD不垂直.B正确.理由:翻折到点A在平面BCD内的射影恰好在直线BC上时,平面ABC⊥平面BCD,此时由CD⊥BC可证CD⊥平面ABC,于是有AB⊥CD.故B正确.C错误.理由如下:若直线AD与直线BC垂直,则由BC⊥CD可知BC⊥平面ACD,于是BC⊥AC,但是ABBC,在△ABC中∠ACB不可能是直角.故直线AD与直线BC不垂直.由以上分析显然D错误.二、填空题(每小题5分,共20分)7.下列说法:①若a∥b,a∥α,则b∥α;②若a∥α,b⊂α,则a∥b;[来源:Zxxk.Com][来源:学#科#网]③若a∥α,则a平行于α内所有的直线;④若a∥α,a∥b,b⊄α,则b∥α.其中正确说法的序号是________.【解析】①中b可能在α内;②a与b还可能异面或者垂直;③a还可能与α内的直线异面或垂直.答案:④8.如图,四棱锥S-ABCD中,底面ABCD为平行四边形,E是SA上一点,当点E满足条件:________时,SC∥平面EBD.【解析】当点E是SA的中点时,连接AC.设AC与BD的交点为O,连接EO.因为四边形ABCD是平行四边形,所以点O是AC的中点.又E是SA的中点,所以OE是△SAC的中位线.所以OE∥SC.因为SC⊄平面EBD,OE⊂平面EBD,所以SC∥平面EBD.答案:点E是SA的中点9.已知四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,点E,F分别是棱PC,PD的中点,则①棱AB与PD所在直线垂直;②平面PBC与平面ABCD垂直;③△PCD的面积大于△PAB的面积;④直线AE与直线BF是异面直线.[来源:学科网]以上结论正确的是________.(写出所有正确结论的编号)【解析】由条件可得AB⊥平面PAD,所以AB⊥PD,故①正确;若平面PBC⊥平面ABCD,由PB⊥BC,得PB⊥平面ABCD,从而PA∥PB,这是不可能的,故②错;S△PCD=CD·PD,S△PAB=AB·PA,由AB=CD,PDPA知③正确;由E,F分别是棱PC,PD的中点,可得EF∥CD,又AB∥CD,所以EF∥AB,故AE与BF共面,④错.答案:①③10.(2016·西宁高二检测)在四面体ABCD中,AB⊥AD,AB=AD=BC=CD=1,且平面ABD⊥平面BCD,M为AB中点,则CM与平面ABD所成角的正弦值为________.【解析】如图所示,取BD中点O,连接CO,MO,由已知条件BC=CD=1,所以BD⊥CO,由平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CO⊥平面ABD,则∠CMO即为直线CM与平面ABD所成的角,由AB⊥AD,所以BD=,则得到BC⊥CD,所以CO=BD=,MO=AD=,所以在Rt△COM中,CM==,所以sin∠CMO===.[来源:Z§xx§k.Com]答案:三、解答题(共4小题,共50分)11.(12分)(2016·台州高二检测)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,点M,N分别是AB,PC的中点,PA=AD=a.(1)求证:MN∥平面PAD.(2)求证:平面PMC⊥平面PCD.【证明】(1)设PD的中点为点E,连接AE,NE,由点N为PC的中点知ENDC,又ABCD是矩形,所以DCAB,所以ENAB,又点M是AB的中点,所以ENAM,所以AMNE是平行四边形,所以MN∥AE,而AE⊂平面PAD,NM⊄平面PAD,所以MN∥平面PAD.(2)因为PA=AD,所以AE⊥PD,又因为PA⊥平面ABCD,CD⊂平面ABCD,所以CD⊥PA,而CD⊥AD,所以CD⊥平面PAD,所以CD⊥AE,因为PD∩CD=D,所以AE⊥平面PCD,因为MN∥AE,所以MN⊥平面PCD,又MN⊂平面PMC,所以平面PMC⊥平面PCD.【补偿训练】(2016·济南高一检测)如图所示,平面四边形PACB中,∠PAB为直角,△ABC为等边三角形,现把△PAB沿着AB折起,使得△APB与△ABC垂直,且点M为AB的中点.(1)求证:平面PAB⊥平面PCM.(2)若2PA=AB,求直线BC与平面PMC所成角的正弦值.【解析】(1)因为平面APB⊥平面ABC且交线为AB,又因为∠PAB为直角,所以AP⊥平面ABC,故AP⊥CM,又因为△ABC为等边三角形,点M为AB的中点,所以CM⊥AB,又因为PA∩AB=A,所以CM⊥平面PAB,又CM⊂平面PCM,所以平面PAB⊥平面PCM.(2)假设PA=a,则AB=2a,再设B到平面PMC的距离为hB.则VP-MBC=VB-PMC=PA·S△MBC=hB·SPMC,在直角三角形PAM中,由PA=AM=a,得PM=a,在等边三角形ABC中,AB边上的高CM=a,而三角形PMC为直角三角形,故面积为S△PMC=CM·PM=·a·a=a2.又S△MBC=S△ABC=a2.所以a·a2=hB·a2.故hB=a.[来源:学科网ZXXK]所以直线BC与平面PMC所成角的正弦值sinθ===.12.(12分)如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC.(1)求证:BC⊥平面PAC.(2)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.【解析】(1)因为PA⊥底面ABC,所以PA⊥BC.又∠BCA=90°,所以AC⊥BC.又因为AC∩PA=A,所以BC⊥平面PAC.(2)因为DE∥BC,又由(1)知,BC⊥平面PAC,所以DE⊥平面PAC.又因为AE⊂平面PAC,PE⊂平面PAC,所以DE⊥AE,DE⊥PE.所以∠AEP为二面角A-DE-P的平面角.因为PA⊥底面ABC,所以PA⊥AC,所以∠PAC=90°.所以在棱PC上存在一点E,使得AE⊥PC.这时∠AEP=90°,故存在点E,使得二面角A-DE-P为直二面角.13.(13分)(2016·杭州高二检测)已知直角梯形ABCD和矩形CDEF所在的平面相互垂直,AD⊥DC,AB∥DC,AB=AD=DE=4,DC=8,(1)证明:BD⊥平面BCF.(2)设二面角E-BC-D的平面角为α,求sinα.(3)M为AD的中点,在DE上是否存在一点P,使得MP∥平面BCE?若存在,求出DP的长;若不存在,请说明理由.【解析】(1)因为平面ABCD⊥平面CDEF,且矩形CDEF中FC⊥DC,所以FC⊥面ABCD,FC⊥DB,在直角梯形ABCD中易得DB⊥BC,又FC∩BC=C,所以BD⊥平面BCF.(2)因为FC⊥平面ABCD,ED∥FC,所以ED⊥平面ABCD,又DB⊥BC,所以EB⊥BC,所以∠EBD为二面角E-BC-D的平面角α,所以sinα=sin∠EBD===.(3)猜想DP=1.取ED,EC的四等分点P,Q,使得ED=4PD,EC=4QC,则PQ∥CD,PQ=CD=6,取BC中点N,连接MN,NQ,则MN∥CD,MN=(CD+AB)=6,所以PQ�MN,所以四边形PQNM为平行四边形,所以MP∥QN,又因为MP⊄平面BCE,QN⊂平面BCE,所以MP∥平面BCE.14.(13分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1.(2)求证:C1F∥平面ABE.(3)求三棱锥E-ABC的体积.【解析】(1)在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1,又AB⊂平面ABE,所以平面ABE⊥平面B1BC

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功