人教版高中数学选修23练习第二章22222事件的相互独立性Word版含解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章随机变量及其分布2.2二项分布及其应用2.2.2事件的相互独立性A级基础巩固一、选择题1.有以下3个问题:(1)掷一枚骰子一次,事件M:“出现的点数为奇数”,事件N:“出现的点数为偶数”;(2)袋中有5红、5黄10个大小相同的小球,依次不放回地摸两球,事件M:“第1次摸到红球”,事件N:“第2次摸到红球”;(3)分别抛掷2枚相同的硬币,事件M:“第1枚为正面”,事件N:“两枚结果相同”.这3个问题中,M,N是相互独立事件的有()A.3个B.2个C.1个D.0个解析:只有(1)中的事件M,N是相互独立事件.答案:C2.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是()A.1425B.1225C.34D.35解析:P甲=810=45,P乙=710,所以P=P甲·P乙=1425.答案:A3.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()A.49B.29C.23D.13解析:设A表示“第一个圆盘的指针落在奇数所在的区域”,则P(A)=23,B表示“第二个圆盘的指针落在奇数据在的区域”,则P(B)=23.故P(AB)=P(A)·P(B)=23×23=49.答案:A4.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.12B.512C.14D.16解析:所求概率为23×14+13×34=512或P=1-23×34-13×14=512.答案:B5.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170,169,168,且各道工序互不影响,则加工出来的零件的次品率为()A.135B.368C.370D.569解析:设加工出来的零件为次品为事件-A,则A为加工出来的零件为正品.所以P(A)=1-P(-A)=1-1-1701-1691-168=370.答案:C二、填空题6.在甲盒内的200个螺杆中有160个是A型,在乙盒内的240个螺母中有180个是A型.若从甲、乙两盒内各取一个,则能配成A型螺栓的概率为________.解析:从甲盒内取一个A型螺杆记为事件M,从乙盒内取一个A型螺母记为事件N,因事件M,N相互独立,则能配成A型螺栓(即一个A型螺杆与一个A型螺母)的概率为P(MN)=P(M)P(N)=160200×180240=35.答案:357.已知P(A)=0.3,P(B)=0.5,当事件A、B相互独立时,P(A∪B)=________,P(A|B)=________.解析:因为A,B相互独立,所以P(A∪B)=P(A)+P(B)-P(A)·P(B)=0.3+0.5-0.3×0.5=0.65;P(A|B)=P(A)=0.3.答案:0.650.38.有一道数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,2人试图独立地在半小时内解决它,则两人都未解决的概率为________,问题得到解决的概率为________.解析:都未解决的概率为1-121-13=12×23=13,问题得到解决就是至少有1人能解决问题,所以P=1-13=23.答案:1323三、解答题9.已知电路中有4个开关,每个开关独立工作,且闭合的概率为12,求灯亮的概率.解:因为A,B断开且C,D至少有一个断开时,线路才断开,导致灯不亮,P=P(AB)1-P(CD)]=P(A)P(B)1-P(CD)]=12×12×1-12×12=316.所以灯亮的概率为1-316=1316.10.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率;(2)求至多有两人当选的概率.解:设甲、乙、丙当选的事件分别为A,B,C,则有P(A)=45,P(B)=35,P(C)=710.(1)因为A,B,C相互独立,所以恰有一名同学当选的概率为P(A—B—C)+P(—AB—C)+P(—A—BC)=P(A)P(—B)P(—C)+P(—A)P(B)P(—C)+P(—A)P(—B)P(C)=45×25×310+15×35×310+15×25×710=47250.(2)至多有两人当选的概率为1-P(ABC)=1-P(A)P(B)P(C)=1-45×35×710=83125.B级能力提升1.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23等于()A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰有1个红球的概率解析:分别记从甲、乙袋中摸出一个红球为事件A、B,则P(A)=13,P(B)=12,由于A、B相互独立,所以1-P(—A)P(—B)=1-23×12=23.根据互斥事件可知C正确.答案:C2.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).解析:分情况讨论:若共有3人被治愈,则P1=C340.93×(1-0.9)=0.2916;若共有4人被治愈,则P2=0.94=0.6561.故至少有3人被治愈的概率为P=P1+P2=0.9477.答案:0.94773.已知A,B,C为三个独立事件,若事件A发生的概率是12,事件B发生的概率是23,事件C发生的概率是34,求下列事件的概率:(1)事件A、B、C只发生两个;(2)事件A、B、C至多发生两个.解:(1)记“事件A,B,C只发生两个”为A1,则事件A1包括三种彼此互斥的情况,AB—C;A—BC;—ABC,由互斥事件概率的加法公式和相互独立事件的概率乘法公式,所以概率为P(A1)=P(AB—C)+P(A—BC)+P(—ABC)=224+324+624=1124,所以事件A,B,C只发生两个的概率为1124.(2)记“事件A,B,C至多发生两个”为A2,则包括彼此互斥的三种情况:事件A,B,C一个也不发生,记为A3,事件A,B,C只发生一个,记为A4,事件A,B,C只发生两个,记为A5,故P(A2)=P(A3)+P(A4)+P(A5)=124+624+1124=34.所以事件A、B、C至多发生两个的概率为34.

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功