平面向量的数量积及运律一

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高考网§5.6平面向量的数量积及运律(一)班级学号姓名一、课堂目标:⑴掌握平面向量的数量积的概念及其几何意义;⑵掌握平面向量的数量积的性质及运算律;⑶掌握平面向量垂直的条件。二、要点回顾:1.a与b的数量积的结果是一个,而实数与a的积a结果仍为。2.设两向量a与b的夹角为,则;且当时;ba//;当时,ba。3.已知两个非零向量a和b,它们的夹角为,则有ba,其中规定零向量与任一向量的数量积为0,记作。4.向量a在b方向上的投影是;向量b在a方向上的投影是;向量ba的几何意义为。5.设a和b为两个非零向量,e是单位向量,为a与e的夹角,则有⑴ae=;⑵ba⑶当a与b同向时,ba;当a与b反向时,ba。特别地,aa=;a。三、目标训练1.下列各式中,正确的是………………………………………………………………………()A.若)(cba,则cabaB.若caba,则cbC.babaD.222baba2.下列各式中,正确的个数是………………………………………………………………()①00a②00a③BAAB0④babaA.4个B.3个C.2个D.1个浙师大附中课堂目标训练《数学第一册》(下)高考网在△ABC中,45,4,5Cba,则CABC……………………………………()A.210B.220C.210D.2204.下列各式中,不正确的是…………………………………………………………………()A.2222bbaabaB.2222bbaabaC.22bababaD.cbacba5.已知,1baa与b的夹角为90,cbakdbac,4,32与d垂直,k的值()A.6B.6C.3D.36.已知,4a5b当下列条件时,分别求ba:⑴.ba//⑵.ba⑶.a与b的夹角为1207.已知正三角形ABC的边长为1,求下列各式的值:⑴.ABCA⑵.ABCABC⑶.CAACAB8.⑴已知ba,求证:baba⑵求证:直径所对的圆周角为直角(利用向量证明)。

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功