新疆兵团农二师华山中学期末高一数学

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高考帮——帮你实现大学梦想!1/12新疆兵团农二师华山中学2016-2017学年上学期期末考试高一数学试卷满分150分考试时间90分钟一、选择题(共12小题,每小题5分,满分60分)1.若A={x|﹣1<x<2},B={x|1<x<3},则A∩B=()A.{x|1<x<2}B.{x|﹣1<x<3}C.{x|1<x<3}D.{x|﹣1<x<2}2.下列函数为奇函数的是()A.y=x+1B.y=exC.y=x2+xD.y=x33.2log510+log50.25=()A.0B.1C.2D.44.sin(π﹣α)cos(﹣α)=()A.B.C.sin2αD.cos2α5.已知函数,那么f[f()]的值为()A.9B.C.﹣9D.﹣6.若点(a,9)在函数y=3x的图象上,则tan的值为()A.0B.C.1D.7.设a=()0.5,b=0.30.5,c=log0.30.2,则a,b,c的大小关系是()A.a>b>cB.a<b<cC.b<a<cD.a<c<b8.要得到函数y=sin2x的图象,只要将函数y=sin(2x﹣)的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位9.已知函数y=f(x+3)是偶函数,则函数y=f(x)图象的对称轴为直线()A.x=﹣3B.x=0C.x=3D.x=610.△ABC的三个内角分别记为A,B,C,若tanAtanB=tanA+tanB+1,则cosC的值是()A.﹣B.C.D.﹣11.定义在R上的偶函数f(x)满足f(x+1)=,且f(x)在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则()A.f(sinα)>f(sinβ)B.f(cosα)>f(cosβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)12.已知x1,x2是函数f(x)=e﹣x﹣|lnx|的两个不同零点,则x1x2的取值范围是()高考帮——帮你实现大学梦想!2/12A.(0,)B.(,1]C.(1,e)D.(,1)二、填空题(共4小题,每小题5分,满分20分)13.设A={(x,y)|y=2x+3},B={(x,y)|y=x+1},则A∩B=.14.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|)的部分图象如图所示,则函数y=f(x)对应的解析式为.15.函数y=﹣的定义域是(用区间表示)16.若f(sin2x)=5sinx﹣5cosx﹣6(0<x<π),则f(﹣)=.三、解答题(共6小题,满分70分)17.已知tanα=3,计算:(Ⅰ);(Ⅱ)sinα•cosα.18.已知函数f(x)=.(Ⅰ)求函数f(x)的定义域和值域;(Ⅱ)判断函数f(x)的奇偶性,并证明.高考帮——帮你实现大学梦想!3/1219.已知函数f(x)=cosx(sinx+cosx).(Ⅰ)若0<α<,且sinα=,求f(α)的值;(Ⅱ)求函数f(x)的最小正周期及单调递增区间.20.设函数f(x)=(Ⅰ)当时,求函数f(x)的值域;(Ⅱ)若函数f(x)是(﹣∞,+∞)上的减函数,求实数a的取值范围.21.如图所示,已知点A(1,0),D(﹣1,0),点B,C在单位圆O上,且∠BOC=.(Ⅰ)若点B(,),求cos∠AOC的值;高考帮——帮你实现大学梦想!4/12(Ⅱ)设∠AOB=x(0<x<),四边形ABCD的周长为y,将y表示成x的函数,并求出y的最大值.22.已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)•[f(x)+f(y)]>0.(1)判断f(x)的单调性,并加以证明;(2)解不等式;(3)若f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求实数m的取值范围.2016-2017学年高一(上)期末数学试卷一、选择题(共12小题,每小题5分,满分60分)1.若A={x|﹣1<x<2},B={x|1<x<3},则A∩B=(A)A.{x|1<x<2}B.{x|﹣1<x<3}C.{x|1<x<3}D.{x|﹣1<x<2}2.下列函数为奇函数的是(D)A.y=x+1B.y=exC.y=x2+xD.y=x33.2log510+log50.25=(C)A.0B.1C.2D.44.sin(π﹣α)cos(﹣α)=(A)A.B.C.sin2αD.cos2α高考帮——帮你实现大学梦想!5/125.已知函数,那么f[f()]的值为(B)A.9B.C.﹣9D.﹣【解答】解:∵,∴==﹣2,而﹣2<0,∴f(﹣2)=3﹣2=.∴=.故选B.6.若点(a,9)在函数y=3x的图象上,则tan的值为()A.0B.C.1D.【考点】指数函数的图象与性质.【分析】先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.【解答】解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.7.设a=()0.5,b=0.30.5,c=log0.30.2,则a,b,c的大小关系是(C)A.a>b>cB.a<b<cC.b<a<cD.a<c<b【解答】解:∵幂函数y=x0.5来判断,在(0,+∞)上为增函数,∴1>>0.30.5>0∴0<b<a<1又∵对数函数y=log0.3x在(0,+∞)上为减函数∴log0.30.2>log0.30.3>1∴c>a>b故选C.8.要得到函数y=sin2x的图象,只要将函数y=sin(2x﹣)的图象(C)A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位9.已知函数y=f(x+3)是偶函数,则函数y=f(x)图象的对称轴为直线()A.x=﹣3B.x=0C.x=3D.x=6【解答】解:函数y=f(x+3)是偶函数,其图象关于y轴,即直线x=0对称,函数y=f(x)图象由函数y=f(x+3)的图象向右平移3个单位得到,故函数y=f(x)图象关于直线x=3对称,故选:C.10.△ABC的三个内角分别记为A,B,C,若tanAtanB=tanA+tanB+1,则cosC的值是(B)高考帮——帮你实现大学梦想!6/12A.﹣B.C.D.﹣【解答】解:∵tanAtanB=tanA+tanB+1,∴tanA+tanB=﹣1+tanAtanB,∵tan(A+B)==﹣1=tan(π﹣C)=tanC,∴tanC=1,∵C为三角形的内角∴C=,∴cosC=,故选:B.11.定义在R上的偶函数f(x)满足f(x+1)=,且f(x)在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则(C)A.f(sinα)>f(sinβ)B.f(cosα)>f(cosβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)【考点】奇偶性与单调性的综合.【分析】由条件f(x+1)=得到f(x)是周期为2的周期函数,由f(x)是定义在R上的偶函数,在[﹣3,﹣2]上是减函数,得到f(x)在[2,3]上是增函数,在[0,1]上是增函数,再由α,β是锐角三角形的两个内角,得到α>90°﹣β,且sinα、cosβ都在区间[0,1]上,从而得到f(sinα)>f(cosβ).【解答】解:∵f(x+1)=,∴f(x+2)=f(x),f(x)是周期为2的周期函数.∵y=f(x)是定义在R上的偶函数,∴f(﹣x)=f(x),∵f(x)在[﹣3,﹣2]上是减函数,∴在[2,3]上是增函数,∴在[0,1]上是增函数,∵α,β是锐角三角形的两个内角.∴α+β>90°,α>90°﹣β,两边同取正弦得:sinα>sin(90°﹣β)=cosβ,且sinα、cosβ都在区间[0,1]上,∴f(sinα)>f(cosβ),故选:C.12.已知x1,x2是函数f(x)=e﹣x﹣|lnx|的两个不同零点,则x1x2的取值范围是(D)A.(0,)B.(,1]C.(1,e)D.(,1)【解答】解:令f(x)=0得e﹣x=|lnx|,作出y=e﹣x和y=|lnx|的函数图象如图所示:高考帮——帮你实现大学梦想!7/12由图象可知,1<x2<e,∴x1x2>,又|lnx1|>|lnx2|,即﹣lnx1>lnx2,∴lnx1+lnx2<0,∴lnx1x2<0,∴x1x2<1.故选D.二、填空题(共4小题,每小题5分,满分20分)13.设A={(x,y)|y=2x+3},B={(x,y)|y=x+1},则A∩B=.【解答】解:联立得:,解得:,则A∩B={(﹣2,﹣1)},故答案为:{(﹣2,﹣1)}14.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|)的部分图象如图所示,则函数y=f(x)对应的解析式为.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由y=Asin(ωx+φ)的部分图象可求得A=1,T=π,从而可得ω,再由f()=sin(2×+φ)=1,|φ|可求得φ,从而可得答案.【解答】解:∵T=•=﹣=,∴ω=2;又A=1,f()=sin(2×+φ)=1,∴+φ=kπ+,k∈Z.∴φ=kπ+(k∈Z),又|φ|,∴φ=,∴f(x)=sin(2x+).故答案为:f(x)=sin(2x+).15.函数y=﹣的定义域是(用区间表示)【考点】函数的定义域及其求法.【分析】由函数y的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:∵函数y=﹣,高考帮——帮你实现大学梦想!8/12∴,即,解得;即0<x<,<x≤3;∴f(x)的定义域是(0,)∪(,3].故答案为:.16.若f(sin2x)=5sinx﹣5cosx﹣6(0<x<π),则f(﹣)=.【解答】解:令sin2x=,得,∵0<x<π,∴,则sinx﹣cosx>0,∴sinx﹣cosx==,∴f(﹣)=f(sin2x)=5(sinx﹣cosx)﹣6=5×.故答案为:1.三、解答题(共6小题,满分70分)17.已知tanα=3,计算:(Ⅰ);(Ⅱ)sinα•cosα.【分析】(Ⅰ)分子、分母同除以cosα,利用同角三角函数基本关系式即可计算得解.(Ⅱ)将分母看成1,即两弦值的平方和,由已知,利用同角三角函数基本关系式即可计算得解.【解答】(本题满分为12分)解:(Ⅰ)∵tanα=3,∴===.…(Ⅱ)∵tanα=3,∴sinα•cosα====.…18.已知函数f(x)=.(Ⅰ)求函数f(x)的定义域和值域;(Ⅱ)判断函数f(x)的奇偶性,并证明.【考点】函数奇偶性的判断;函数的定义域及其求法;函数的值域.高考帮——帮你实现大学梦想!9/12【分析】(Ⅰ)由1﹣3x≠0得x≠0,求得函数f(x)的定义域,由3x=>0,求得f(x)的范围,可得f(x)的值域.(Ⅱ)因为函数f(x)的定义域关于原点对称,且满足f(﹣x)=﹣f(x),可得f(x)为奇函数.【解答】解:(Ⅰ)由1﹣3x≠0得x≠0,故函数f(x)的定义域为(﹣∞,0)∪(0,+∞).由f(x)=,可得3x=>0,求得f(x)>1,或f(x)<﹣1,f(x)的值域为(﹣∞,﹣1)∪(1,+∞).(Ⅱ)f(x)为奇函数,理由如下:因为函数f(x)的定义域为(﹣∞,0)∪(0,+∞),且,所以,f(x)为奇函数.19.已知函数f(x)=cosx(sinx+cosx).(Ⅰ)若0<α<,且sinα=,求f(α)的值;(Ⅱ)求函数f(x)的最小正周期及单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)根据同角的三角函数关系,求出sinα、cosα的值,再计算f(α)的值;(Ⅱ)化函数f(x)为正弦型函数,即可求出f(x)的最小正周期和单调减区间.【解答】解:(Ⅰ)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)=××(+)=;…(Ⅱ)函数f(x)=cosx(sinx+cosx)=(cosxsinx+cos2x)=sin2x+cos2x+=sin(2x+)+,…∴f(x)的最小正周期为π;高考帮——帮你实现大学梦想!10/12令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,∴函数f(

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功