河南省洛阳市高一上期末数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高考帮——帮你实现大学梦想!1/182015-2016学年河南省洛阳市高一(上)期末数学试卷一、本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∩B)=()A.{1,3,4}B.{3,4}C.{3}D.{4}2.在直角坐标系中,下列直线中倾斜角为钝角的是()A.y=3x﹣1B.x+2=0C.+=1D.2x﹣y+1=03.线段x﹣2y+1=0(﹣1≤x≤3)的垂直平分线方程为()A.x+2y﹣3=0B.2x+y﹣3=0C.2x+y﹣1=0D.2x﹣y﹣1=04.函数y=lnx与y=﹣2x+6的图象有交点P(x0,y0),若x0∈(k,k+1),则整数k的值为()A.1B.2C.3D.45.已知a、b∈R,且满足0<a<1<b,则下列大小关系正确的是()A.ab<ba<logabB.ba<logab<abC.logab<ba<abD.logab<ab<ba6.半径R的半圆卷成一个圆锥,则它的体积为()A.πR3B.πR3C.πR3D.πR37.给出下面四个命题(其中m,n,l为空间中不同的三条直线,α,β为空间中不同的两个平面):①m∥n,n∥α⇒m∥α②α⊥β,α∩β=m,l⊥m⇒l⊥β;③l⊥m,l⊥n,m⊂α,n⊂α⇒l⊥α④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β.其中错误的命题个数为()A.1个B.2个C.3个D.4个8.若不等式a|x|>x2﹣对任意x∈[﹣1,1]都成立,则实数a的取值范围是()A.(,1)∪(1,+∞)B.(0,)∪(1,+∞)C.(,1)∪(1,2)D.(0,)∪(1,2)9.在四棱锥P﹣ABCD中,各侧面是全等的等腰三角形,腰长为4且顶角为30°,底面是正方形(如图),在棱PB,PC上各有一点M、N,且四边形AMND的周长最小,点S从A出发依次沿四边形AM,MN,ND运动至点D,记点S行进的路程为x,棱锥S﹣ABCD的体积为V(x),则函数V(x)的图象是()高考帮——帮你实现大学梦想!2/18A.B.C.D.10.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(lga)+f(lg)≤2f(1),则a的取值范围是()A.(﹣∞,10]B.[,10]C.(0,10]D.[,1]11.在直角坐标系内,已知A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,若⊙C上存在点P,使∠MPN=90°,其中M、N的坐标分别为(﹣m,0)(m,0),则m的最大值为()A.4B.5C.6D.712.若关于m、n的二元方程组有两组不同的实数解,则实数k的取值范围是()A.(0,)B.(,+∞)C.(,]D.(,]二、填空题:本大题共4小题,每小题5分,共20分.13.在空间直角坐标系中,已知点A(1,0,2),B(1,﹣3,1),若点M在y轴上,且|MA|=|MB|,则M的坐标是.14.若函数y=﹣x2+ax﹣2在区间(0,3]上既有最大值又有最小值,则实数a的取值范围为.15.已知函数,则满足不等式的实数m的取值范围为.16.一个多面体的直观图和三视图如图,M是A1B的中点,N是棱B1C1上的任意一点(含顶点).高考帮——帮你实现大学梦想!3/18①当点N是棱B1C1的中点时,MN∥平面ACC1A1;②MN⊥A1C;③三棱锥N﹣A1BC的体积为VN﹣ABC=a3;④点M是该多面体外接球的球心.其中正确的是.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知直线l1:x+my+1=0和l2:(m﹣3)x﹣2y+(13﹣7m)=0.(1)若l1⊥l2,求实数m的值;(2)若l1∥l2,求l1与l2之间的距离d.18.已知函数f(x)=loga(﹣x﹣1)+loga(x+3),其中a>0且a≠1.(1)求函数f(x)的定义域;(2)求函数f(x)的值域.19.如图,△PAD与正方形ABCD共用一边AD,平面PAD⊥平面ABCD,其中PA=PD,AB=2,点E是棱PA的中点.(1)求证:PC∥平面BDE;(2)若直线PA与平面ABCD所成角为60°,求点A到平面BDE的距离.20.已知函数f(x)=(a、b、c∈Z)是奇函数.(1)若f(1)=1,f(2)﹣4>0,求f(x);(2)若b=1,且f(x)>1对任意的x∈(1,+∞)都成立,求a的最小值.21.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.(1)若BE=3,求几何体BEC﹣AFD的体积;(2)求三棱锥A﹣CDF的体积的最大值,并求此时二面角A﹣CD﹣E的正切值.高考帮——帮你实现大学梦想!4/1822.已知点A(6,2),B(3,2),动点M满足|MA|=2|MB|.(1)求点M的轨迹方程;(2)设M的轨迹与y轴的交点为P,过P作斜率为k的直线l与M的轨迹交于另一点Q,若C(1,2k+2),求△CPQ面积的最大值,并求出此时直线l的方程.高考帮——帮你实现大学梦想!5/182015-2016学年河南省洛阳市高一(上)期末数学试卷参考答案与试题解析一、本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∩B)=()A.{1,3,4}B.{3,4}C.{3}D.{4}【考点】交、并、补集的混合运算.【分析】直接利用补集与交集的运算法则求解即可.【解答】解:∵集合A={1,2},B={2,3},∴A∩B={2},由全集U={1,2,3,4},∴∁U(A∩B)={1,3,4}.故选:A.2.在直角坐标系中,下列直线中倾斜角为钝角的是()A.y=3x﹣1B.x+2=0C.+=1D.2x﹣y+1=0【考点】直线的倾斜角.【分析】根据斜率的正负判断其倾斜角的范围即可.【解答】解:对于A:k=3,是锐角,对于B:是直角,对于C:k=﹣,是钝角,对于D:k=2,是锐角,故选:C.3.线段x﹣2y+1=0(﹣1≤x≤3)的垂直平分线方程为()A.x+2y﹣3=0B.2x+y﹣3=0C.2x+y﹣1=0D.2x﹣y﹣1=0【考点】直线的一般式方程与直线的垂直关系.【分析】求出线段的中点坐标,求出线段的垂直平分线的斜率,然后求出垂直平分线方程.【解答】解:x=﹣1时,y=0,x=3时,y=2,∴(﹣1,0),(3,2)的中点为(1,1),线段x﹣2y+1=0的斜率是:k==,线段x﹣2y+1=0(﹣1≤x≤3)的垂直平分线的斜率是:﹣2,故所求直线方程是:y﹣1=﹣2(x﹣1),即:2x+y﹣3=0,故选:B.高考帮——帮你实现大学梦想!6/184.函数y=lnx与y=﹣2x+6的图象有交点P(x0,y0),若x0∈(k,k+1),则整数k的值为()A.1B.2C.3D.4【考点】函数的图象.【分析】可判断函数f(x)=lnx﹣6+2x连续,从而由零点的判定定理求解.【解答】解:设f(x)=lnx+2x﹣6,因为函数f(x)=lnx﹣6+2x连续,且f(2)=ln2﹣6+4=ln2﹣2<0,f(3)=ln3﹣6+6=ln3>0;故函数y=lnx﹣6+2x的零点在(2,3)之间,故x0∈(2,3);∵x0∈(k,k+1),∴k=2,故选B.5.已知a、b∈R,且满足0<a<1<b,则下列大小关系正确的是()A.ab<ba<logabB.ba<logab<abC.logab<ba<abD.logab<ab<ba【考点】对数值大小的比较.【分析】利用指数函数、对数函数的单调性求解.【解答】解:∵a、b∈R,且满足0<a<1<b,∴logab<loga1=0,ba>b0=a0>ab>0,∴logab<ab<ba.故选:D.6.半径R的半圆卷成一个圆锥,则它的体积为()A.πR3B.πR3C.πR3D.πR3【考点】旋转体(圆柱、圆锥、圆台).【分析】求出扇形的弧长,然后求出圆锥的底面周长,转化为底面半径,求出圆锥的高,然后求出体积.【解答】解:2πr=πR,所以r=,则h=,所以V=故选A7.给出下面四个命题(其中m,n,l为空间中不同的三条直线,α,β为空间中不同的两个平面):①m∥n,n∥α⇒m∥α②α⊥β,α∩β=m,l⊥m⇒l⊥β;③l⊥m,l⊥n,m⊂α,n⊂α⇒l⊥α④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β.其中错误的命题个数为()高考帮——帮你实现大学梦想!7/18A.1个B.2个C.3个D.4个【考点】空间中直线与平面之间的位置关系.【分析】①根据线面平行的判定定理进行判断.②根据线面垂直的性质定理进行判断.③根据线面垂直的定义进行判断.④根据面面平行的判定定理进行判断.【解答】解:①m∥n,n∥α,则m∥α或m⊂α,故①错误,②α⊥β,α∩β=m,l⊥m,则l⊥β或l∥β或l⊂β或l与β相交;故②错误,③l⊥m,l⊥n,m⊂α,n⊂α,若m与n相交,则l⊥α,否则不成立,故③错误,④若m∩n=A,设过m,n的平面为γ,若m∥α,n∥α,则α∥γ,若m∥β,n∥β,则γ∥β,则α∥β成立.故④正确,故错误是①②③,故选:C.8.若不等式a|x|>x2﹣对任意x∈[﹣1,1]都成立,则实数a的取值范围是()A.(,1)∪(1,+∞)B.(0,)∪(1,+∞)C.(,1)∪(1,2)D.(0,)∪(1,2)【考点】函数恒成立问题.【分析】设f(x)=a|x|,g(x)=x2﹣,根据不等式的大小关系转化为两个函数的图象关系,利用分类讨论以及数形结合进行求解即可.【解答】解:设f(x)=a|x|,g(x)=x2﹣,当x∈[﹣1,1]时,g(x)∈[﹣,],∵f(x)和g(x)都是偶函数,∴只要保证当x∈[0,1]时,不等式a|x|>x2﹣恒成立即可.当x∈[0,1]时,f(x)=ax,若a>1时,f(x)=ax≥1,此时不等式a|x|>x2﹣恒成立,满足条件.若0<a<1时,f(x)=ax为减函数,而g(x)为增函数,此时要使不等式a|x|>x2﹣恒成立,则只需要f(1)>g(1)即可,即a>1﹣=,此时<a<1,高考帮——帮你实现大学梦想!8/18综上<a<1或a>1,故选:A.9.在四棱锥P﹣ABCD中,各侧面是全等的等腰三角形,腰长为4且顶角为30°,底面是正方形(如图),在棱PB,PC上各有一点M、N,且四边形AMND的周长最小,点S从A出发依次沿四边形AM,MN,ND运动至点D,记点S行进的路程为x,棱锥S﹣ABCD的体积为V(x),则函数V(x)的图象是()A.B.C.D.【考点】函数的图象.【分析】根据棱锥的体积公式求出函数的解析式,并根据正四棱锥侧面展开图,从A到D最短距离为直角三角形PAD的斜边为4,求出x的范围,判断函数的图象即可.【解答】解:四棱锥P﹣ABCD中,各侧面是全等的等腰三角形,腰长为4且顶角为30°,∴BC2=PB2+PC2﹣2PB•PCcos30°=16+16﹣2×4×4×=32﹣16,∴底面正方形的面积s=32﹣16,h=xtan30°,∴V(x)=sh=xtan30°,为线性函数,∵四边形AMND的周长最小,正四棱锥侧面展开图如图所示,∴正四棱锥侧面展开图,从A到D最短距离为直角三角形PAD的斜边为4,∴x≤4故选:C.高考帮——帮你实现大学梦想!9/1810.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(lga)+f(lg)≤2f(1),则a的取值范围是()A.(﹣∞,10]B.[,10]C.(0,10]D.[,1]【考点】奇偶性与单调性的综合.【分析】根据函数的奇偶数和单调性之间的关系,将不等式进行等价转化即可得到结论.【解答】解:∵函数f(x)是定

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功