1高中数学必修一同步训练及解析1.已知集合A={x|x1},B={x|-1x2},则A∩B=()A.{x|-1x2}B.{x|x-1}C.{x|-1x1}D.{x|1x2}解析:选D.如图所示.A∩B={x|x1}∩{x|-1x2}={x|1x2}.2.已知集合M={1,2,3},N={2,3,4}则()A.M⊆NB.N⊆MC.M∩N={2,3}D.M∪N={1,4}解析:选C.∵M={1,2,3},N={2,3,4}.∴选项A、B显然不对.M∪N={1,2,3,4},∴选项D错误.又M∩N={2,3},故选C.3.设M={0,1,2,4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M∩P)=________.解析:M∩N={1,4},M∩P={4,7},所以(M∩N)∪(M∩P)={1,4,7}.答案:{1,4,7}4.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.解析:A∪B=A,即B⊆A,∴m≥2.答案:m≥2[A级基础达标]1.下列关系Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是()A.1B.2C.3D.4解析:选C.只有Z∪N=N是错误的,应是Z∪N=Z.2.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)解析:选C.由P={x|x2≤1}得P={x|-1≤x≤1}.由P∪M=P得M⊆P.又M={a},∴-1≤a≤1.3.已知集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N+}的关系的韦恩(Venn)图,如图所示,则阴影部分所示的集合的元素共有()A.3个2B.2个C.1个D.无穷多个解析:选B.M={x|-1≤x≤3},集合N是全体正奇数组成的集合,则阴影部分所示的集合为M∩N={1,3},即阴影部分所示的集合共有2个元素.4.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=________.解析:∵A∩B={2,3},∴3∈B,∴m=3.答案:35.设集合A={x|-1x2},B={x|xa},若A∩B≠∅,则a的取值范围是________.解析:利用数轴分析可知,a-1.答案:a-16.已知集合A={x|3-x03x+60},集合B={m|32m-1},求:A∩B,A∪B.解:∵A={x|3-x03x+60}={x|-2x3},B={m|32m-1}={m|m2}.用数轴表示集合A,B,如图.∴A∩B={x|-2x2},A∪B={x|x3}.[B级能力提升]7.设A={(x,y)|(x+2)2+(y+1)2=0},B={-2,-1},则必有()A.A⊇BB.A⊆BC.A=BD.A∩B=∅解析:选D.A={(x,y)|(x+2)2+(y+1)2=0}={(-2,-1)}是点集,B={-2,-1}是数集,所以A∩B=∅.8.若集合A={参加2012年奥运会的运动员},集合B={参加2012年奥运会的男运动员},集合C={参加2012年奥运会的女运动员},则下列关系正确的是()A.A⊆BB.B⊆CC.A∩B=CD.B∪C=A解析:选D.参加2012年奥运会的运动员是参加2012年奥运会的男运动员和女运动员的总和,即A=B∪C.9.满足条件{1,3}∪M={1,3,5}的集合M的个数是________.解析:∵{1,3}∪M={1,3,5},∴M中必须含有5,∴M可以是{5},{5,1},{5,3},{1,3,5},共4个.答案:410.已知集合M={x|2x-4=0},集合N={x|x2-3x+m=0},(1)当m=2时,求M∩N,M∪N;(2)当M∩N=M时,求实数m的值.解:由题意得M={2}.(1)当m=2时,N={x|x2-3x+2=0}={1,2},则M∩N={2},M∪N={1,2}.(2)∵M∩N=M,∴M⊆N.3∵M={2},∴2∈N.∴2是关于x的方程x2-3x+m=0的解,即4-6+m=0,解得m=2.11.集合A={x|-1≤x3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a0},满足B∪C=C,求实数a的取值范围.解:(1)∵B={x|x≥2},∴A∩B={x|2≤x3}.(2)C={x|x-a2},B∪C=C⇒B⊆C,∴-a22,∴a-4.