精练四天体运动

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

精练四天体运动【考点提示】⑴万有引力定律及应用⑵人造卫星的运动⑶宇宙速度【命题预测】由于航天技术、人造卫星是现代科技发展的重要领域,将继续成为高考的热点。多以选择、计算题型出现。高考认证一、选择题1.我国发射的一颗绕月运行的探月卫星“嫦娥1号”。设该卫星的轨道是圆形的,且贴近月球表面。已知月球的质量约为地球质量的,月球的半径约为地球半径的,地球上的第一宇宙速度约为7.9km/s,则该探月卫星绕月运行的速率约为A.0.4km/sB.1.8km/sC.11km/sD.36km/s2.宇航员在月球上做自由落体实验,将某物体由距月球表面高h处释放,经时间t后落到月球表面(设月球半径为R)。据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为A.B.C.D.3.把火星和地球绕太阳运行的轨道视为圆周。由火星和地球绕太阳的周期之比可求得A.火星和地球的质量之比B.火星和太阳的质量之比C.火星和地球到太阳的距离之比D.火星和地球太阳运行速度大小之比4.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运行一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100倍。假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有A.恒星质量与太阳质量之比B.恒星密度与太阳密度之比C.行星质量与地球质量之比D.行星运行速度与地球公转速度之比5.某人造卫星运动的轨道可近似看作是以地心为中心的圆。由于阻力作用,人造卫星到地心的距离从r1慢慢变到r2,用Ek1、Ek2分别表示卫星在这两个轨道上的动能,则6.1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km。若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同。已知地球半径R=6400km,地球表面重力加速度为g。这个小行星表面的重力加速度为()A.400gB.gC.20gD.g若人造卫星绕地球做匀速圆周运动,则下列说法正确的是()A.卫星的轨道半径越大,它的运行速度越大B.卫星的轨道半径越大,它的运行速度越小C.卫星的质量一定时,轨道半径越大,它需要的向心力越大D.卫星的质量一定时,轨道半径越大,它需要的向心力越小8.火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆.已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比()(A)火卫一距火星表面较近(B)火卫二的角速度较大(C)火卫一的运动速度较大(D)火卫二的向心加速度较大9.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率.如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动.由此能得到半径为R、密度为ρ、质量为M且均匀分布的星球的最小自转周期T.下列表达式中正确的是()A.T=2B.T=2C.T=D.T=10.某人造地球卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变,每次测量中卫星的运动可近似看作圆周运动.某次测量卫星的轨道半径为r1,后来变为r2,r2<rR1.以Ek1、Ek2表示卫星在这两个轨道上的动能,T1、T2表示卫星在这两个轨道上绕地运动的周期,则A.Ek2<Ek1,T2>T1B.Ek2>Ek1,T2<T1C.Ek2<Ek1,T2<T1D.Ek2>Ek1,T2>T111.可以发射一颗这样的人造地球卫星,使其圆轨道()A.与地球表面上某一纬度线(非赤道)是共面同心圆B.与地球表面上某一经度线所决定的圆是共面同心圆C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的D.与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的12.地球同步卫星到地心的距离r可由r3=求出.已知式中a的单位是m,b的单位是s,c的单位是m/s2(A)a是地球半径,b是地球自转的周期,c(B)a是地球半径,b是同步卫星绕地心运动的周期,c(C)a是赤道周长,b是地球自转周期,c(D)a是地球半径,b是同步卫星绕地心运动的周期,c是地球表面处的重力加速度13.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,如图2-10,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是(A)卫星在轨道3上的速率大于在轨道1上的速率(B)卫星在轨道3上的角速度小于在轨道1上的角速度(C)卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度(D)卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度我们的银河系的恒星中大约四分之一是双星。某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G。由此可求出S2的质量为()A.B.C.D.二、非选择题15.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律。天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见的暗星B构成。两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图所示。引力常量为G,由观测能够得到可见星A的速率v和运行周期T。(1)可见星A所受暗星B的引力FA可等效为位于O点处质量为m′的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m′(用m1、m2表示);(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量ms的2倍,它将有可能成为黑洞。若可见星A的速率v=2.7×105m/s,运行周期T=4.7π×104s,质量m1=6ms,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11N·m2/kg2,ms=2.0×1030kg)答案(1)(2)(3)暗星B有可能是黑洞。16.如图所示,A是地球的同步卫星.另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,他们再一次相距最近?=2πt=17.宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。设每个星体的质量均为。(1)试求第一种形式下,星体运动的线速度和周期。(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?答案〖1B2B3CD4ABD5B6B7BD8AC9D10B11CD12AD13BD14D〗

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功