高一数学人教版必修3第五章概率Word版含解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第五章概率重点列表:重点名称重要指数重点1随机事件的概念★★★重点2对立与互斥的概念★★★★重点详解:1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫做相对于条件S的____________.(2)在条件S下,一定不会发生的事件,叫做相对于条件S的____________.必然事件与不可能事件统称为相对于一定条件的确定事件.(3)在一定条件下可能发生也可能不发生的事件,叫做相对于条件S的__________.(4)____________和____________统称为事件,一般用大写字母A,B,C,…表示.2.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的________,称事件A出现的比例fn(A)=________为事件A出现的频率.(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的____________fn(A)稳定在某个常数上,把这个____________记作P(A),称为事件A的____________.(3)在一次试验中几乎不可能发生的事件称为____________.3.事件的关系与运算(类比集合的关系与运算)定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B______事件A(或称事件A包含于事件B)(或AB)相等关系若BA且AB____________并事件(和事件)若某事件发生当且仅当事件A发生______事件B发生,称此事件为事件A与事件B的并事件A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生____事件B发生,则称此事件为事件A与事件B的交事件A∩B(或AB)互斥事件若______为不可能事件,则事件A与事件B互斥A∩B=______对立事件若________为不可能事件,________为必然事件,那么称事件A与事件B互为对立事件A∩B=______P(A∪B)=P(A)+P(B)=____________拓展:“互斥事件”与“对立事件”的区别及联系:两个事件A与B是互斥事件,有如下三种情况:①若事件A发生,则事件B就不发生;②若事件B发生,则事件A就不发生;③事件A,B都不发生.两个事件A与B是对立事件,仅有前两种情况.因此,互斥未必对立,但对立一定互斥.4.概率的几个基本性质(1)概率的取值范围:____________.(2)必然事件的概率P(E)=____________.(3)不可能事件的概率P(F)=____________.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A∪B)=___________.推广:如果事件A1,A2,…,An两两互斥(彼此互斥),那么事件A1+A2+…+An发生的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+An)=___________.②若事件B与事件A互为对立事件,则P(A)=____________________.【答案】1.(1)必然事件(2)不可能事件(3)随机事件(4)确定事件随机事件2.(1)频数nAn(2)频率常数概率(3)小概率事件3.包含BAA=B或且A∩BØA∩BA∪BØ14.(1)0≤P(A)≤1(2)1(3)0(4)①P(A)+P(B)P(A1)+P(A2)+…+P(An)②1-P(B)重点1:随机事件的概念【要点解读】概率与频率的关系(1)频率是一个随机数,在试验前是不能确定的.(2)概率是一个确定数,是客观存在的,与试验次数无关.(3)频率是概率的近似值,随着试验次数的增加,频率一般会越来越接近概率,因而概率是频率的稳定值.【考向1】随机事件的判断【例题】同时掷两颗骰子一次,(1)“点数之和是13”是什么事件?其概率是多少?(2)“点数之和在2~13之间”是什么事件?其概率是多少?(3)“点数之和是7”是什么事件?其概率是多少?【评析】明确必然事件、不可能事件、随机事件的意义及相互联系.判断一个事件是哪类事件要看两点:一是看条件,二是看结果发生与否,在条件S下事件发生与否是对应于条件S而言的.【考向2】不可能事件与必然事件【例题】一个口袋内装有5个白球和3个黑球,从中任意取出一个球,(1)“取出的球是红球”是什么事件?它的概率是多少?(2)“取出的球是黑球”是什么事件?它的概率是多少?(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解:(1)由于口袋内装有黑、白两种颜色的球,故“取出的球是红球”是不可能事件,其概率为0.(2)由已知,从口袋内取出一个球,可能是白球,也可能是黑球,故“取出的球是黑球”是随机事件,它的概率是38.(3)由于口袋内装的是黑、白两种颜色的球,故取出一个球不是黑球,就是白球,因此,“取出的球是白球或黑球”是必然事件,它的概率为1.重点2:对立与互斥的概念及应用【要点解读】互斥事件、对立事件的判定方法(1)利用基本概念①互斥事件不可能同时发生;②对立事件首先是互斥事件,且必有一个发生.(2)利用集合的观点来判断设事件A与B所含的结果组成的集合分别是A,B,①事件A与B互斥,即集合A∩B=Ø;②事件A与B对立,即集合A∩B=Ø,且A∪B=I(全集),也即A=∁IB或B=∁IA;③对互斥事件A与B的和A+B,可理解为集合A∪B.3.只有事件A,B互斥时,才有公式P(A+B)=P(A)+P(B)成立,否则公式不成立.4.求复杂的互斥事件的概率一般有两种方法:一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式P(A)=1-P(A),即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.【考向1】对立与互斥的概念【例题】判断下列各组事件是否是互斥事件,并说明道理.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中(1)恰有1名男生和恰有2名男生;(2)至少有一名男生和至少有一名女生;(3)至少有一名男生和全是男生;(4)至少有1名男生和全是女生.(3)不是互斥事件.道理是:“至少有一名男生”包括“一名男生、一名女生”和“两名都是男生”,这与“全是男生”可同时发生.(4)是互斥事件.道理是:“至少有1名男生”包括“1名男生、1名女生”和“两名都是男生”两种结果,它和“全是女生”不可能同时发生.【评析】判断两个事件是否为互斥事件,就是考查它们能否同时发生,如果不能同时发生,则是互斥事件,否则,就不是互斥事件.判断对立与互斥除了用定义外,也可以利用集合的观点来判断.注意:①事件的包含、相等、互斥、对立等,其发生的前提条件应是一样的;②对立是针对两个事件来说的,而互斥可以是多个事件的关系.【考向2】对立与互斥的应用【例题】经统计,在某展览馆处排队等候验证的人数及其概率如下表:排队人数012345概率0.100.160.300.300.100.04(1)求至多2人排队的概率;(2)求至少1人排队的概率.【评析】求事件的概率常需求互斥事件的概率和,要学会把一个事件分拆为几个互斥事件.当直接计算事件的概率比较复杂(或不能直接计算)时,通常是正难则反转而求其对立事件的概率.难点列表:难点名称难度指数难点1古典概型★★★★难点2集合概型★★★★★难点详解:古典概型1.基本事件和基本事件空间的概念(1)在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为____________.(2)所有基本事件构成的集合称为______________,常用大写希腊字母________表示.2.基本事件的特点(1)任何两个基本事件是____________的.(2)任何事件(除不可能事件)都可以表示成____________的和.3.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型:(1)试验中所有可能出现的基本事件只有__________个.(2)每个基本事件出现的可能性____________.4.古典概型的概率公式在古典概型中,一次试验可能出现的结果有n个,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=________.【答案】1.(1)基本事件(2)基本事件空间Ω2.(1)互斥(2)基本事件3.(1)有限(2)相等4.mn几何概型1.随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个满足条件的数的机会是____________.利用计算器,Excel,Scilab等都可以产生随机数.2.几何概型的定义如果每个事件发生的概率只与构成该事件区域的____________(____________或____________)成比例,则称这样的概率模型为________________,简称____________.3.概率计算公式在几何区域D中随机地取一点,记事件“该点落在其内部的一个区域d内”为事件A,则事件A发生的概率P(A)=.求试验中几何概型的概率,关键是求得事件所占区域d和整个区域D的几何度量,然后代入公式即可求解.【答案】1.均等的2.长度面积体积几何概率模型几何概型3.构成事件A的区域的长度(面积或体积)试验的全部结果构成的区域的长度(面积或体积)难点1:古典概型【要点解读】1.古典概型(有些书籍也称等可能概型)是概率论中最简单且直观的模型,在概率论的发展初期曾是主要研究对象,许多概率的运算法则都是在古典概型中得到证明的(遂谓之“古典”).要判断一个试验是否为古典概型,只需要判断这个试验是否具有古典概型的两个特征——有限性和等可能性.2.(1)如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)=mn求出事件A的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重复,不遗漏.(2)如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m,n,再运用公式P(A)=mn求概率.3.对于事件A的概率的计算,关键是要分清基本事件总数n与事件A包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A是什么,它包含的基本事件有多少个.4.较为简单的问题可以直接使用古典概型概率公式计算,较为复杂的概率问题的处理方法有:(1)转化为几个互斥事件的和,利用互斥事件的加法公式求解;(2)采用间接法,先求事件A的对立事件A的概率,再由P(A)=1-P(A)求事件A的概率.【考向1】基本事件与基本事件空间的概念【例题】将一枚均匀硬币抛掷三次.(1)试用列举法写出该试验所包含的基本事件;(2)事件A:“恰有两次出现正面向上”包含几个基本事件;(3)事件B:“三次都出现正面向上”包含几个基本事件.解:(1)试验“将一枚均匀硬币抛掷三次”所出现的所有基本事件有:(正,正,反),(正,反,正),(正,反,反),(正,正,正),(反,反,反),(反,反,正),(反,正,反),(反,正,正),共8种等可能结果.(2)事件A包含的基本事件有三个:(正,正,反),(正,反,正),(反,正,正).(3)事件B包含的基本事件只有一个:(正,正,正).【评析】基本事件是试验中不能再分解的事件,是“最小”的“事件单位”.任何基本事件都是互斥的,任何复杂事件都可以分解为基本事件,所有基本事件的全体组成基本事件空间.【考向2】列举基本事件求概率【例题】小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若X0就去打球,若X=0就去唱歌,若X0就去下棋.(1)写出数量积X的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功