高中学生学科素质训练高一数学同步测试(4)—两角和差的正弦、余弦、正切一、选择题(每小题5分,共60分,请将正确答案填在题后括号内。)1.给出如下四个命题①对于任意的实数α和β,等式sinsincoscos)cos(恒成立②存在实数α,β,使等式sinsincoscos)cos(能成立③公式)tan(tantan1tanan成立的条件是)(2Zkk且)(2Zkk④不存在无穷多个α和β,使sincoscossin)sin(其中假命题是()A.①②B.②③C.③④D.②③④2.函数)cos(sinsin2xxxy的最大值是()A.21B.12C.2D.23.当]2,2[x时,函数xxxfcos3sin)(的()A.最大值为1,最小值为-1B.最大值为1,最小值为21C.最大值为2,最小值为-2D.最大值为2,最小值为-14.已知)cos(,32tantan,7)tan(则的值()A.21B.22C.22D.225.已知2sin,53)sin(,1312)cos(,432则()A.6556B.-6556C.5665D.-56656.75sin30sin15sin的值等于()A.43B.83C.81D.417.函数)4cot()(,tan1tan1)(),4tan()(xxhxxxgxxf其中为相同函数的是()A.)()(xgxf与B.)()(xhxg与C.)()(xfxh与D.)()()(xhxgxf及与8.α、β、都是锐角,则,81tan,51tan,21tan等于()A.3B.4C.65D.459.设0)4tan(tan2qpxx是方程和的两个根,则p、q之间的关系是()A.p+q+1=0B.p-q+1=0C.p+q-1=0D.p-q-1=010.已知)tan(),sin(4sin,cos则a的值是()A.412aaB.-412aaC.214aaD.412aa11.在△ABC中,90c,则BAtantan与1的关系为()A.1tantanBAB.1tantanBAC.1tantanBAD.不能确定12.50sin10sin70cos20sin的值是()A.41B.23C.21D.43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m)sin()sin(,则22coscos的值为.14.在△ABC中,33tantantanCBA,CABtantantan2则∠B=.15.若),24cos()24sin(则)60tan(=.16.若yxyxcoscos,22sinsin则的取值范围是.三、解答题(本大题共74分,17—21题每题12分,22题14分)17.化简求值:)34sin(x)36cos()33cos(xx)34sin(x18.已知0cos,cos,90且是方程02150sin50sin222xx的两根,求)2tan(的值.19.求证:yxxyxyx22sincos2sin)tan()tan(20.已知α,β∈(0,π)且71tan,21)tan(,求2的值.21.证明:xxxxx2coscossin22tan23tan.22.已知△ABC的三个内角满足:A+C=2B,BCAcos2cos1cos1求2cosCA的值.参考答案1.C2.A3.D4.D5.B6.C7.C8.B9.B10.D11.B12.A13.m14.315.3216.]214,214[17.原式=)34cos()33sin()33cos()34sin(xxxx=46218.)4550sin(2)2150(sin4)50sin2(50sin222x85cos5sin5cos95sin21xx3275tan)2tan(19.证:yxyxyxyxyxyxyxyx2222sinsincoscos)]()sin[()cos()sin()cos()sin(左yxxyxxxx222222sincos2sinsin)sin(coscos2sin右20.4321)2tan(,31tan21.左=xxxxxxxxxxxx2coscossin22cos23cossin2cos23cos2sin23cos2cos23sin右22.由题设B=60°,A+C=120°,设2CA知A=60°+αC=60°-α22cos,2243coscoscos1cos12即CA故222cosCA