学业分层测评(十一)(建议用时:45分钟)[学业达标]一、选择题1.等差数列前n项和为Sn,若a3=4,S3=9,则S5-a5=()A.14B.19C.28D.60【解析】在等差数列{an}中,a3=4,S3=3a2=9,∴a2=3,S5-a5=a1+a2+a3+a4=2(a2+a3)=2×7=14.【答案】A2.等差数列{an}的前n项和记为Sn,若a2+a4+a15的值为确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15【解析】a2+a4+a15=a1+d+a1+3d+a1+14d=3(a1+6d)=3a7=3×a1+a132=313×13a1+a132=313S13.于是可知S13是常数.【答案】C3.已知等差数列的前n项和为Sn,若S130,S120,则此数列中绝对值最小的项为()A.第5项B.第6项C.第7项D.第8项【解析】由S12=12a1+66d0,S13=13a1+78d0,得a1+112d0,a1+6d0,所以a70,a6-d2,故|a6||a7|.【答案】C4.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9等于()A.63B.45C.36D.27【解析】∵a7+a8+a9=S9-S6,而由等差数列的性质可知,S3,S6-S3,S9-S6构成等差数列,所以S3+(S9-S6)=2(S6-S3),即S9-S6=2S6-3S3=2×36-3×9=45.【答案】B5.含2n+1项的等差数列,其奇数项的和与偶数项的和之比为()A.2n+1nB.n+1nC.n-1nD.n+12n【解析】∵S奇=a1+a3+…+a2n+1=n+1a1+a2n+12,S偶=a2+a4+…+a2n=na2+a2n2.又∵a1+a2n+1=a2+a2n,∴S奇S偶=n+1n.故选B.【答案】B二、填空题6.已知等差数列{an}中,Sn为其前n项和,已知S3=9,a4+a5+a6=7,则S9-S6=.【解析】∵S3,S6-S3,S9-S6成等差数列,而S3=9,S6-S3=a4+a5+a6=7,∴S9-S6=5.【答案】57.已知数列{an}的前n项和Sn=n2-9n,第k项满足5ak8,则k=.【解析】∵an=S1,n=1,Sn-Sn-1,n≥2,∴an=2n-10.由52k-108,得7.5k9,∴k=8.【答案】88.首项为正数的等差数列的前n项和为Sn,且S3=S8,当n=时,Sn取到最大值.【解析】∵S3=S8,∴S8-S3=a4+a5+a6+a7+a8=5a6=0,∴a6=0,∵a10,∴a1a2a3a4a5a6=0,a70.故当n=5或6时,Sn最大.【答案】5或6三、解答题9.已知等差数列{an}中,a1=9,a4+a7=0.(1)求数列{an}的通项公式;(2)当n为何值时,数列{an}的前n项和取得最大值?【解】(1)由a1=9,a4+a7=0,得a1+3d+a1+6d=0,解得d=-2,∴an=a1+(n-1)·d=11-2n.(2)法一a1=9,d=-2,Sn=9n+nn-12·(-2)=-n2+10n=-(n-5)2+25,∴当n=5时,Sn取得最大值.法二由(1)知a1=9,d=-20,∴{an}是递减数列.令an≥0,则11-2n≥0,解得n≤112.∵n∈N*,∴n≤5时,an0,n≥6时,an0.∴当n=5时,Sn取得最大值.10.若等差数列{an}的首项a1=13,d=-4,记Tn=|a1|+|a2|+…+|an|,求Tn.【解】∵a1=13,d=-4,∴an=17-4n.当n≤4时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=na1+nn-12d=13n+nn-12×(-4)=15n-2n2;当n≥5时,Tn=|a1|+|a2|+…+|an|=(a1+a2+a3+a4)-(a5+a6+…+an)=S4-(Sn-S4)=2S4-Sn=2×13+1×42-(15n-2n2)=2n2-15n+56.∴Tn=15n-2n2,n≤4,2n2-15n+56,n≥5.[能力提升]1.已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=()A.12B.14C.16D.18【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=na1+an2=210,得n=14.【答案】B2.(2015·海淀高二检测)若数列{an}满足:a1=19,an+1=an-3(n∈N*),则数列{an}的前n项和数值最大时,n的值为()A.6B.7C.8D.9【解析】因为an+1-an=-3,所以数列{an}是以19为首项,-3为公差的等差数列,所以an=19+(n-1)×(-3)=22-3n.设前k项和最大,则有ak≥0,ak+1≤0,所以22-3k≥0,22-3k+1≤0,所以193≤k≤223.因为k∈N*,所以k=7.故满足条件的n的值为7.【答案】B3.(2015·潍坊高二检测)设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是,项数是.【解析】设等差数列{an}的项数为2n+1,S奇=a1+a3+…+a2n+1=n+1a1+a2n+12=(n+1)an+1,S偶=a2+a4+a6+…+a2n=na2+a2n2=nan+1,所以S奇S偶=n+1n=4433,解得n=3,所以项数2n+1=7,S奇-S偶=an+1,即a4=44-33=11为所求中间项.【答案】1174.已知数列{an}的前n项和为Sn,数列{an}为等差数列,a1=12,d=-2.【导学号:05920069】(1)求Sn,并画出{Sn}(1≤n≤13)的图象;(2)分别求{Sn}单调递增、单调递减的n的取值范围,并求{Sn}的最大(或最小)的项;(3){Sn}有多少项大于零?【解】(1)Sn=na1+nn-12d=12n+nn-12×(-2)=-n2+13n.图象如图.(2)Sn=-n2+13n=-n-1322+1694,n∈N*,∴当n=6或7时,Sn最大;当1≤n≤6时,{Sn}单调递增;当n≥7时,{Sn}单调递减.{Sn}有最大值,最大项是S6,S7,S6=S7=42.(3)由图象得{Sn}中有12项大于零.