模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为()A.6B.1C.2D.4【解析】由题意知kAB=m+4-2-3=-2,∴m=6.【答案】A2.在x轴、y轴上的截距分别是-2、3的直线方程是()A.2x-3y-6=0B.3x-2y-6=0C.3x-2y+6=0D.2x-3y+6=0【解析】由直线的截距式得,所求直线的方程为x-2+y3=1,即3x-2y+6=0.【答案】C3.已知正方体外接球的体积是323π,那么正方体的棱长等于()A.22B.223C.423D.433【解析】设正方体的棱长为a,球的半径为R,则43πR3=323π,∴R=2.又∵3a=2R=4,∴a=433.【答案】D4.关于空间直角坐标系Oxyz中的一点P(1,2,3)有下列说法:①点P到坐标原点的距离为13;②OP的中点坐标为12,1,32;③与点P关于x轴对称的点的坐标为(-1,-2,-3);④与点P关于坐标原点对称的点的坐标为(1,2,-3);⑤与点P关于坐标平面xOy对称的点的坐标为(1,2,-3).其中正确的个数是()A.2B.3C.4D.5【解析】点P到坐标原点的距离为12+22+32=14,故①错;②正确;与点P关于x轴对称的点的坐标为(1,-2,-3),故③错;与点P关于坐标原点对称的点的坐标为(-1,-2,-3),故④错;⑤正确,故选A.【答案】A5.如图1,在长方体ABCDA1B1C1D1中,M、N分别是棱BB1、B1C1的中点,若∠CMN=90°,则异面直线AD1和DM所成角为()图1A.30°B.45°C.60°D.90°【解析】因为MN⊥DC,MN⊥MC,所以MN⊥平面DCM.所以MN⊥DM.因为MN∥AD1,所以AD1⊥DM.【答案】D6.(2015·福建高考)某几何体的三视图如图2所示,则该几何体的表面积等于()图2A.8+22B.11+22C.14+22D.15【解析】由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+22.【答案】B7.已知圆x2+y2+2x+2y+k=0和定点P(1,-1),若过点P的圆的切线有两条,则k的取值范围是()A.(-2,+∞)B.(-∞,2)C.(-2,2)D.(-∞,-2)∪(2,+∞)【解析】因为方程x2+y2+2x+2y+k=0表示一个圆,所以4+4-4k>0,所以k<2.由题意知点P(1,-1)在圆外,所以12+(-1)2+2×1+2×(-1)+k>0,解得k>-2,所以-2<k<2.【答案】C8.在三棱柱ABCA1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°【解析】如图,取BC的中点E,连接DE、AE、AD.依题设知AE⊥平面BB1C1C.故∠ADE为AD与平面BB1C1C所成的角.设各棱长为2,则AE=32×2=3,DE=1.∵tan∠ADE=AEDE=31=3,∴∠ADE=60°,故选C.【答案】C9.(2015·开封高一检测)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列说法中正确的是()①若直线m、n都平行于平面α,则m、n一定不是相交直线;②若直线m、n都垂直于平面α,则m、n一定是平行直线;③已知平面α、β互相垂直,且直线m、n也互相垂直,若m⊥α,则n⊥β;④若直线m、n在平面α内的射影互相垂直,则m⊥n.A.②B.②③C.①③D.②④【解析】对于①,m与n可能平行,可能相交,也可能异面;对于②,由线面垂直的性质定理可知,m与n一定平行,故②正确;对于③,还有可能n∥β;对于④,把m,n放入正方体中,如图,取A1B为m,B1C为n,平面ABCD为平面α,则m与n在α内的射影分别为AB与BC,且AB⊥BC.而m与n所成的角为60°,故④错.因此选A.【答案】A10.(2015·全国卷Ⅱ)已知三点A(1,0),B(0,3),C(2,3),则△ABC外接圆的圆心到原点的距离为()A.53B.213C.253D.43【解析】在坐标系中画出△ABC(如图),利用两点间的距离公式可得|AB|=|AC|=|BC|=2(也可以借助图形直接观察得出),所以△ABC为等边三角形.设BC的中点为D,点E为外心,同时也是重心.所以|AE|=23|AD|=233,从而|OE|=|OA|2+|AE|2=1+43=213,故选B.【答案】B11.(2016·重庆高一检测)已知P(x,y)是直线kx+y+4=0(k>0)上一点,PA是圆C:x2+y2-2y=0的一条切线,A是切点,若PA长度的最小值为2,则k的值是()【导学号:09960153】A.3B.212C.22D.2【解析】圆C:x2+y2-2y=0的圆心是(0,1),半径是r=1,∵PA是圆C:x2+y2-2y=0的一条切线,A是切点,PA长度的最小值为2,∴圆心到直线kx+y+4=0的最小距离为5,由点到直线的距离公式可得|1+4|k2+1=5,∵k>0,∴k=2,故选D.【答案】D12.(2016·德州高一检测)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥DABC的体积为()A.212a3B.a312C.24a3D.a36【解析】取AC的中点O,如图,则BO=DO=22a,又BD=a,所以BO⊥DO,又DO⊥AC,所以DO⊥平面ACB,VDABC=13S△ABC·DO=13×12×a2×22a=212a3.【答案】A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知两条平行直线的方程分别是2x+3y+1=0,mx+6y-5=0,则实数m=________.【解析】由于两直线平行,所以2m=36≠1-5,∴m=4.【答案】414.一个横放的圆柱形水桶,桶内的水漫过底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为________.【解析】设圆柱形水桶的底面半径为R,高为h,桶直立时,水的高度为x.横放时水桶底面在水内的面积为14πR2-12R2,水的体积为V水=14πR2-12R2h.直立时水的体积不变,则有V水=πR2x,∴x∶h=(π-2)∶4π.【答案】(π-2)∶4π15.已知一个等腰三角形的顶点A(3,20),一底角顶点B(3,5),另一顶点C的轨迹方程是________.【解析】设点C的坐标为(x,y),则由|AB|=|AC|得x-32+y-202=3-32+20-52,化简得(x-3)2+(y-20)2=225.因此顶点C的轨迹方程为(x-3)2+(y-20)2=225(x≠3).【答案】(x-3)2+(y-20)2=225(x≠3)16.(2015·湖南高考)若直线3x-4y+5=0与圆x2+y2=r2(r0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=__________.【解析】如图,过点O作OD⊥AB于点D,则|OD|=532+-42=1.∵∠AOB=120°,OA=OB,∴∠OBD=30°,∴|OB|=2|OD|=2,即r=2.【答案】2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2且l1与l2的距离为5,求l1,l2的方程.【解】若直线l1,l2的斜率都不存在,则l1的方程为x=0,l2的方程为x=5,此时l1,l2之间距离为5,符合题意;若l1,l2的斜率均存在,设直线的斜率为k,由斜截式方程得直线l1的方程为y=kx+1,即kx-y+1=0,由点斜式可得直线l2的方程为y=k(x-5),即kx-y-5k=0,在直线l1上取点A(0,1),则点A到直线l2的距离d=|1+5k|1+k2=5,∴25k2+10k+1=25k2+25,∴k=125.∴l1的方程为12x-5y+5=0,l2的方程为12x-5y-60=0.综上知,满足条件的直线方程为l1:x=0,l2:x=5或l1:12x-5y+5=0,l2:12x-5y-60=0.18.(本小题满分12分)已知圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0.(1)求证:两圆相交;(2)求两圆公共弦所在直线的方程.【导学号:09960154】【解】(1)证明:圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0化为标准方程分别为圆C1:(x-2)2+(y+1)2=5与圆C2:x2+(y-1)2=5,则圆心坐标分别为C1(2,-1)与C2(0,1),半径都为5,故圆心距为2-02+-1-12=22,又02225,故两圆相交.(2)将两圆的方程作差即可得出两圆的公共弦所在直线的方程,即(x2+y2-4x+2y)-(x2+y2-2y-4)=0,得x-y-1=0.19.(本小题满分12分)如图3,在三棱锥ABPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.图3(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.【证明】(1)∵M为AB的中点,D为PB的中点,∴MD∥AP.又∵DM⊄平面APC,AP⊂平面APC,∴DM∥平面APC.(2)∵△PMB为正三角形,D为PB中点,∴MD⊥PB.又∵MD∥AP,∴AP⊥PB.又∵AP⊥PC,PC∩PB=P,∴AP⊥平面PBC.∵BC⊂平面PBC,∴AP⊥BC.又∵AC⊥BC,且AC∩AP=A,∴BC⊥平面APC.又∵BC⊂平面ABC,∴平面ABC⊥平面APC.20.(本小题满分12分)已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0.(1)求△ABC的顶点B、C的坐标;(2)若圆M经过A、B且与直线x-y+3=0相切于点P(-3,0),求圆M的方程.【解】(1)AC边上的高BH所在直线的方程为y=0,所以AC边所在直线的方程为x=0,又CD边所在直线的方程为2x-2y-1=0,所以C0,-12,设B(b,0),则AB的中点Db2,12,代入方程2x-2y-1=0,解得b=2,所以B(2,0).(2)由A(0,1),B(2,0)可得,圆M的弦AB的中垂线方程为4x-2y-3=0,①由与x-y+3=0相切,切点为(-3,0)可得,圆心所在直线方程为y+x+3=0,②①②联立可得,M-12,-52,半径|MA|=14+494=502,所以所求圆方程为x+122+y+522=252.21.(本小题满分12分)如图4,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.图4(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.【解】(1)证明:在三棱柱ABCA1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1,又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB的中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=12AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC