高中数学人教A版必修二章末综合测评2Word版含答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

章末综合测评(二)点、直线、平面之间的位置关系(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交B.异面C.平行D.异面或相交【解析】根据空间两条直线的位置关系和公理4可知c与b异面或相交,但不可能平行.【答案】D2.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直【解析】A、B、C显然正确.易知过一条直线有无数个平面与已知平面垂直.选D.【答案】D3.(2015·太原高二检测)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面【解析】对于A,通过常见的图形正方体判断,从同一个顶点出发的三条棱两两垂直,故A错;对于B,因为l1⊥l2,所以l1,l2所成的角是90°,又因为l2∥l3,所以l1,l3所成的角是90°,所以l1⊥l3,故B对;对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;对于D,例如三棱锥的三侧棱共点,但不共面,故D错.故选B.【答案】B4.设a、b为两条直线,α、β为两个平面,则正确的命题是()【导学号:09960089】A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b【解析】A中,a、b可以平行、相交或异面;B中,a、b可以平行或异面;C中,α、β可以平行或相交.【答案】D5.(2016·山西山大附中高二检测)如图1,在正方体ABCD­A1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、B1C1的中点,则异面直线EF与GH所成的角等于()图1A.45°B.60°C.90°D.120°【解析】如图,连接A1B、BC1、A1C1,则A1B=BC1=A1C1,且EF∥A1B、GH∥BC1,所以异面直线EF与GH所成的角等于60°.【答案】B6.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β【解析】选项A,平行于同一条直线的两个平面也可能相交,故选项A错误;选项B,垂直于同一直线的两个平面互相平行,选项B正确;选项C,由条件应得α⊥β,故选项C错误;选项D,l与β的位置不确定,故选项D错误.故选B.【答案】B7.(2015·洛阳高一检测)如图2,△ADB和△ADC都是以D为直角顶点的等腰直角三角形,且∠BAC=60°,下列说法中错误的是()图2A.AD⊥平面BDCB.BD⊥平面ADCC.DC⊥平面ABDD.BC⊥平面ABD【解析】由题可知,AD⊥BD,AD⊥DC,所以AD⊥平面BDC,又△ABD与△ADC均为以D为直角顶点的等腰直角三角形,所以AB=AC,BD=DC=22AB.又∠BAC=60°,所以△ABC为等边三角形,故BC=AB=2BD,所以∠BDC=90°,即BD⊥DC.所以BD⊥平面ADC,同理DC⊥平面ABD.所以A、B、C项均正确.选D.【答案】D8.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为26,则侧面与底面所成的二面角为()A.30°B.45°C.60°D.90°【解析】由棱锥体积公式可得底面边长为23,高为3,在底面正方形的任一边上,取其中点,连接棱锥的顶点及其在底面的射影,根据二面角定义即可判定其平面角,在直角三角形中,因为tanθ=3(设θ为所求平面角),所以二面角为60°,选C.【答案】C9.将正方形ABCD沿BD折成直二面角,M为CD的中点,则∠AMD的大小是()A.45°B.30°C.60°D.90°【解析】如图,设正方形边长为a,作AO⊥BD,则AM=AO2+OM2=22a2+12a2=32a,又AD=a,DM=a2,∴AD2=DM2+AM2,∴∠AMD=90°.【答案】D10.在矩形ABCD中,若AB=3,BC=4,PA⊥平面AC,且PA=1,则点P到对角线BD的距离为()A.292B.135C.175D.1195【解析】如图,过点A作AE⊥BD于点E,连接PE.∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∴BD⊥平面PAE,∴BD⊥PE.∵AE=AB·ADBD=125,PA=1,∴PE=1+1252=135.【答案】B11.(2016·大连高一检测)已知三棱柱ABC­A1B1C1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()【导学号:09960090】A.75°B.60°C.45°D.30°【解析】如图所示,P为正三角形A1B1C1的中心,设O为△ABC的中心,由题意知:PO⊥平面ABC,连接OA,则∠PAO即为PA与平面ABC所成的角.在正三角形ABC中,AB=BC=AC=3,则S=34×(3)2=334,VABC­A1B1C1=S×PO=94,∴PO=3.又AO=33×3=1,∴tan∠PAO=POAO=3,∴∠PAO=60°.【答案】B12.正方体ABCD­A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是()A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°【解析】因为AH⊥平面A1BD,BD⊂平面A1BD,所以BD⊥AH.又BD⊥AA1,且AH∩AA1=A.所以BD⊥平面AA1H.又A1H⊂平面AA1H.所以A1H⊥BD,同理可证BH⊥A1D,所以点H是△A1BD的垂心,A正确.因为平面A1BD∥平面CB1D1,所以AH⊥平面CB1D1,B正确.易证AC1⊥平面A1BD.因为过一点有且只有一条直线与已知平面垂直,所以AC1和AH重合.故C正确.因为AA1∥BB1,所以∠A1AH为直线AH和BB1所成的角.因为∠AA1H≠45°,所以∠A1AH≠45°,故D错误.【答案】D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.设平面α∥平面β,A、C∈α,B、D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________.【解析】由面面平行的性质得AC∥BD,ASBS=CSSD,解得SD=9.【答案】914.如图3,四棱锥S­ABCD中,底面ABCD为平行四边形,E是SA上一点,当点E满足条件:________时,SC∥平面EBD.图3【解析】当E是SA的中点时,连接EB,ED,AC.设AC与BD的交点为O,连接EO.∵四边形ABCD是平行四边形,∴点O是AC的中点.又E是SA的中点,∴OE是△SAC的中位线.∴OE∥SC.∵SC⊄平面EBD,OE⊂平面EBD,∴SC∥平面EBD.【答案】E是SA的中点15.如图4所示,在正方体ABCD­A1B1C1D1中,M,N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN等于________.图4【解析】∵B1C1⊥平面A1ABB1,MN⊂平面A1ABB1,∴B1C1⊥MN,又∠B1MN为直角,∴B1M⊥MN,而B1M∩B1C1=B1.∴MN⊥平面MB1C1,又MC1⊂平面MB1C1,∴MN⊥MC1,∴∠C1MN=90°.【答案】90°16.已知四棱锥P­ABCD的底面ABCD是矩形,PA⊥底面ABCD,点E、F分别是棱PC、PD的中点,则①棱AB与PD所在直线垂直;②平面PBC与平面ABCD垂直;③△PCD的面积大于△PAB的面积;④直线AE与直线BF是异面直线.以上结论正确的是________.(写出所有正确结论的序号)【解析】由条件可得AB⊥平面PAD,∴AB⊥PD,故①正确;若平面PBC⊥平面ABCD,由PB⊥BC,得PB⊥平面ABCD,从而PA∥PB,这是不可能的,故②错;S△PCD=12CD·PD,S△PAB=12AB·PA,由AB=CD,PDPA知③正确;由E、F分别是棱PC、PD的中点,可得EF∥CD,又AB∥CD,∴EF∥AB,故AE与BF共面,④错.【答案】①③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)如图5所示,已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC,求证:AD⊥平面SBC.图5【证明】∵∠ACB=90°,∴BC⊥AC.又∵SA⊥平面ABC,∴SA⊥BC,∵SA∩AC=A,∴BC⊥平面SAC,∴BC⊥AD.又∵SC⊥AD,SC∩BC=C,∴AD⊥平面SBC.18.(本小题满分12分)如图6,三棱柱ABC­A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.图6(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.【证明】(1)∵C1C⊥平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于O点,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.(本小题满分12分)(2016·德州高一检测)某几何体的三视图如图7所示,P是正方形ABCD对角线的交点,G是PB的中点.(1)根据三视图,画出该几何体的直观图;(2)在直观图中,①证明:PD∥面AGC;②证明:面PBD⊥面AGC.图7【解】(1)该几何体的直观图如图所示:(2)证明:①连接AC,BD交于点O,连接OG,因为G为PB的中点,O为BD的中点,所以OG∥PD.②连接PO,由三视图知,PO⊥平面ABCD,所以AO⊥PO.又AO⊥BO,所以AO⊥平面PBD.因为AO⊂平面AGC,所以平面PBD⊥平面AGC.20.(本小题满分12分)(2016·济宁高一检测)如图8,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE=EF=1.图8(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.【导学号:09960091】【证明】(1)如图,设AC与BD交于点G.因为EF∥AG,且EF=1,AG=12AC=1,所以四边形AGEF为平行四边形.所以AF∥EG.因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(2)连接FG,∵EF∥CG,EF=CG=1,∴四边形CEFG为平行四边形,又∵CE=EF=1,∴▱CEFG为菱形,∴EG⊥CF.在正方形ABCD中,AC⊥BD.∵正方形ABCD和四边形ACEF所在的平面互相垂直,∴BD⊥平面CEFG.∴BD⊥CF.又∵EG∩BD=G,∴CF⊥平面BDE.21.(本小题满分12分)(2015·山东高考)如图9,三棱台DEF­ABC中,AB=2DE,G,H分别为AC,BC的中点.图9(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.【解】(1)证法一:连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF­ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则M为CD的中点.又H为BC的中点,所以MH∥BD.又MH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF­ABC中,由BC=2EF,H为BC的中点,

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功