高中数学人教A版必修二第二章点直线平面之间的位置关系学业分层测评9Word版含答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学业分层测评(九)(建议用时:45分钟)[达标必做]一、选择题1.与同一平面平行的两条直线()A.平行B.相交C.异面D.平行或相交或异面【解析】如图:故选D.【答案】D2.经过平面外的两点作该平面的平行平面,可以作()A.0个B.1个C.0个或1个D.1个或2个【解析】若两点所在直线与平面相交,则为0个,若平行则可作1个.【答案】C3.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是()A.平行B.相交C.平行或相交D.AB⊂α【解析】结合图形可知选项C正确.【答案】C4.以下四个命题:①三个平面最多可以把空间分成八部分;②若直线a⊂平面α,直线b⊂平面β,则“a与b相交”与“α与β相交”等价;③若α∩β=l,直线a⊂平面α,直线b⊂平面β,且a∩b=P,则P∈l;④若n条直线中任意两条共面,则它们共面.其中正确的是()A.①②B.②③C.③④D.①③【解析】对于①,正确;对于②,逆推“α与β相交”推不出“a与b相交”,也可能a∥b;对于③,正确;对于④,反例:正方体的侧棱任意两条都共面,但这4条侧棱却不共面,故④错.所以正确的是①③.【答案】D5.如果点M是两条异面直线a,b外的一点,则过点M且与a,b都平行的平面()A.只有一个B.恰有两个C.没有或只有一个D.有无数个【解析】当点M在过a且与b平行的平面或过b且与a平行的平面内时,这样满足条件的平面没有;当点M不在上述两个平面内时,满足条件的平面只有一个.故选C.【答案】C二、填空题6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.【导学号:09960057】【解析】如图,在正方体ABCD­A1B1C1D1中,设平面ABCD为α,A1B1为a,则a∥α,当分别取EF,BC1,BC为b时,均满足a与b异面,于是b∥α,b∩α=B,b⊂α(其中E,F为棱的中点).【答案】平行或相交或b在α内7.在长方体ABCD­A1B1C1D1的六个表面与六个对角面(面AA1C1C、面ABC1D1、面ADC1B1、面BB1D1D、面A1BCD1及面A1B1CD)所在的平面中,与棱AA1平行的平面共有________个.【解析】如图所示,结合图形可知AA1∥平面BB1C1C,AA1∥平面DD1C1C,AA1∥平面BB1D1D.【答案】3三、解答题8.如图2­1­27所示,在正方体ABCD­A1B1C1D1中,M,N分别是A1B1和BB1的中点,则下列直线与平面的位置关系是什么?图2­1­27(1)AM所在的直线与平面ABCD的位置关系;(2)CN所在的直线与平面ABCD的位置关系;(3)AM所在的直线与平面CDD1C1的位置关系;(4)CN所在的直线与平面CDD1C1的位置关系.【解】(1)AM所在的直线与平面ABCD相交;(2)CN所在的直线与平面ABCD相交;(3)AM所在的直线与平面CDD1C1平行;(4)CN所在的直线与平面CDD1C1相交.9.三个平面α,β,γ.如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b,(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.【解】(1)c∥α.因为α∥β,所以α与β没有公共点,又c⊂β,所以c与α无公共点,则c∥α.(2)c∥a.因为α∥β,所以α与β没有公共点,又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,a,b没有公共点.因此a∥b,又c∥b,所以c∥a.[自我挑战]10.两平面α、β平行,a⊂α,下列四个命题:(1)a与β内的所有直线平行;(2)a与β内无数条直线平行;(3)直线a与β内任何一条直线都不垂直;(4)a与β无公共点.其中正确命题的个数有()【导学号:09960058】A.1个B.2个C.3个D.4个【解析】由α∥β,a⊂α,可知a∥β,因此(2)(4)正确.在正方体ABCD­A1B1C1D1中,取A1B1为a,平面ABCD为β,平面A1B1C1D1为α,则a⊂α,α∥β,显然β内的直线BC⊥A1B1,所以(1)(3)不正确.故选B.【答案】B11.如图2­1­28所示,ABCD­A1B1C1D1是正方体,在图中,E,F分别是D1C1,B1B的中点,画出图①②中有阴影的平面与平面ABCD的交线,并给出证明.图2­1­28【解】如图①所示,过点E作EN平行于BB1交CD于N,连接NB并延长交EF的延长线于M,连接AM,则直线AM即为有阴影的平面与平面ABCD的交线.如图②所示,延长DC,过点C1作C1M∥A1B交DC的延长线于点M,连接BM,则直线BM即为有阴影的平面与平面ABCD的交线.证明:在图①中,因为直线EN∥BF,所以B,N,E,F四点共面,因此EF与NB相交,交点为M.因为M∈EF,且M∈NB,而EF⊂平面AEF,NB⊂平面ABCD,所以M是平面ABCD与平面AEF的公共点.又因为点A是平面ABCD与平面AEF的公共点,故直线AM为两平面的交线.在图②中,C1M在平面CDD1C1内,因此与DC的延长线相交,交点为M,则点M为平面A1C1B与平面ABCD的公共点,又点B也是这两个平面的公共点,因此直线BM是两平面的交线.

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功