高中数学人教A版选修12学业分层测评3合情推理Word版含解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.(2016·郑州高二检测)下列说法正确的是()A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论无法判定正误【解析】合情推理得出的结论不一定正确,故A错;合情推理必须有前提有结论,故B对;合情推理中类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,可进行猜想,故C错;合情推理得出的结论可以进行判定正误,故D错.【答案】B2.下面使用类比推理恰当的是()A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C.“(a+b)c=ac+bc”类比推出“a+bc=ac+bc(c≠0)”D.“(ab)n=anbn”类比推出“(a+b)n=an+bn”【解析】由实数运算的知识易得C项正确.【答案】C3.(2016·大连高二检测)用火柴棒摆“金鱼”,如图2­1­7所示,图2­1­7按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n-2B.8n-2C.6n+2D.8n+2【解析】从①②③可以看出,从第②个图开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.【答案】C4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的()A.一条中线上的点,但不是中心B.一条垂线上的点,但不是垂心C.一条角平分线上的点,但不是内心D.中心【解析】由正四面体的内切球可知,内切球切于四个面的中心.【答案】D5.(2016·南昌调研)已知整数对的序列为(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第57个数对是()A.(2,10)B.(10,2)C.(3,5)D.(5,3)【解析】由题意,发现所给数对有如下规律:(1,1)的和为2,共1个;(1,2),(2,1)的和为3,共2个;(1,3),(2,2),(3,1)的和为4,共3个;(1,4),(2,3),(3,2),(4,1)的和为5,共4个;(1,5),(2,4),(3,3),(4,2),(5,1)的和为6,共5个.由此可知,当数对中两个数字之和为n时,有n-1个数对.易知第57个数对中两数之和为12,且是两数之和为12的数对中的第2个数对,故为(2,10).【答案】A二、填空题6.把正数排列成如图2­1­8甲的三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图2­1­8乙的三角形数阵,现把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2017,则n=__________.【导学号:19220014】12345678910111213141516甲12457910121416乙图2­1­8【解析】图乙中第k行有k个数,第k行最后的一个数为k2,前k行共有kk+12个数,由44×44=1936,45×45=2025知an=2017出现在第45行,第45行第一个数为1937,第2017-19372+1=41个数为2017,所以n=4444+12+41=1031.【答案】10317.(2016·日照高二检测)二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=43πr3,观察发现V′=S.已知四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=________.【解析】因为V=8πr3,所以W=2πr4,满足W′=V.【答案】2πr48.已知{bn}为等比数列,b5=2,则b1b2b3…b9=29.若{an}为等差数列,a5=2,则{an}的类似结论为________.【解析】结合等差数列的特点,类比等比数列中b1b2b3…b9=29可得,在{an}中,若a5=2,则有a1+a2+a3+…+a9=2×9.【答案】a1+a2+a3+…+a9=2×9三、解答题9.已知数列8×112×32,8×232×52,…,8×n2n-122n+12,…,Sn为其前n项和,计算S1,S2,S3,S4,观察计算结果,并归纳出Sn的公式.【解】S1=8×112×32=89=32-132=2×1+12-12×1+12,S2=89+8×232×52=2425=52-152=2×2+12-12×2+12,S3=2425+8×352×72=4849=72-172=2×3+12-12×3+12,S4=4849+8×472×92=8081=92-192=2×4+12-12×4+12,由此归纳猜想Sn=2n+12-12n+12.10.(2016·咸阳高二检测)在平面几何中,研究正三角形内任意一点与三边的关系时,我们有真命题:边长为a的正三角形内任意一点到各边的距离之和是定值32a.类比上述命题,请你写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出简要的证明.【解】类比所得的真命题是:棱长为a的正四面体内任意一点到四个面的距离之和是定值63a.证明:设M是正四面体P­ABC内任一点,M到平面ABC,平面PAB,平面PAC,平面PBC的距离分别为d1,d2,d3,d4.由于正四面体四个面的面积相等,故有:VP­ABC=VM­ABC+VM­PAB+VM­PAC+VM­PBC=13·S△ABC·(d1+d2+d3+d4),而S△ABC=34a2,VP­ABC=212a3,故d1+d2+d3+d4=63a(定值).[能力提升]1.根据给出的数塔,猜测123456×9+7等于()1×9+2=11;12×9+3=111;123×9+4=1111;1234×9+5=11111;12345×9+6=111111;A.1111110B.1111111C.1111112D.1111113【解析】由前5个等式知,右边各位数字均为1,位数比前一个等式依次多1位,所以123456×9+7=1111111,故选B.【答案】B2.已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则AGGD=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等”,则AOOM=()A.1B.2C.3D.4【解析】如图,设正四面体的棱长为1,即易知其高AM=63,此时易知点O即为正四面体内切球的球心,设其半径为r,利用等体积法有4×13×34r=13×34×63⇒r=612,故AO=AM-MO=63-612=64,故AO∶OM=64∶612=3∶1.【答案】C3.(2016·温州高二检测)如图2­1­9所示,椭圆中心在坐标原点,F为左焦点,当FB→⊥AB→时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于_________________________.【导学号:19220015】图2­1­9【解析】如图所示,设双曲线方程为x2a2-y2b2=1(a0,b0),则F(-c,0),B(0,b),A(a,0),所以FB→=(c,b),AB→=(-a,b).又因为FB→⊥AB→,所以FB→·AB→=b2-ac=0,所以c2-a2-ac=0,所以e2-e-1=0,所以e=1+52或e=1-52(舍去).【答案】1+524.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【解】(1)选择②式,计算如下:sin215°+cos215°-sin15°cos15°=1-12sin30°=1-14=34.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=34.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°·cosα+sin30°sinα)=sin2α+34cos2α+32sinαcosα+14sin2α-32sinαcosα-12sin2α=34sin2α+34cos2α=34.

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功