学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.在空间中,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【解析】A中平行投影可能平行,A为假命题.B、C中的两个平面可以平行或相交,为假命题.由线面垂直的性质知,D为真命题.【答案】D2.下列命题中是假命题的是()A.a·b=0(a≠0,b≠0),则a⊥bB.若|a|=|b|,则a=bC.若ac2>bc2,则a>bD.若α=60°,则cosα=12【解析】因为|a|=|b|只能说明a与b的模相等,所以a=b不一定成立,故选B.【答案】B3.下列四个命题中,真命题是()A.a>b,c>d⇒ac>bdB.a<b⇒a2<b2C.1a<1b⇒a>bD.a>b,c<d⇒a-c>b-d【解析】可以通过举反例的方法说明A、B、C为假命题.【答案】D4.已知实数a,b,c,d满足a+b=c+d=1,ac+bd1,则下列四个命题为真命题的是()A.在a,b,c,d中有且仅有一个是负数B.在a,b,c,d中有且仅有两个是负数C.在a,b,c,d中至少有一个是负数D.在a,b,c,d中都是负数【解析】举例取特殊值,验证可知C是真命题.【答案】C5.下面的命题中是真命题的是()A.y=sin2x的最小正周期为2πB.若方程ax2+bx+c=0(a≠0)的两根同号,则ca>0C.若a=(1,k),b=(-2,6),a∥b,则k=3D.在△ABC中,若AB→·BC→>0,则B为钝角【解析】A中,y=sin2x=1-cos2x2,T=2π2=π,故A为假命题;C中,∵a∥b,∴1-2=k6,得k=-3,故C为假命题;D中,当AB→·BC→>0时,向量AB→与BC→的夹角为锐角,而B为钝角,故D为假命题.【答案】B二、填空题6.下列命题:①若xy=1,则x,y互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac2>bc2,则a>b.其中真命题的序号是________.【解析】②中四条边相等的四边形是菱形,不一定是正方形,③中平行四边形不是梯形,①、④正确.【答案】①④7.给出下列语句:①空集是任何集合的真子集;②函数y=ax+1是指数函数吗?③一个数不是正数就是负数;④老师写的粉笔字真漂亮!⑤若x∈R,则x2+4x+5>0;⑥作△ABC≌△A1B1C1.其中为命题的序号是________,为真命题的序号是________.【解析】①是命题,且是假命题,因为空集是任何非空集合的真子集;②该语句是疑问句,不是命题;③是命题,且是假命题,因为数0既不是正数,也不是负数;④该语句是感叹句,不是命题;⑤是命题,因为x2+4x+5=(x+2)2+1>0恒成立,所以是真命题;⑥该语句是祈使句,不是命题.【答案】①③⑤⑤8.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的等价条件是l与α内的两条直线垂直.上面命题中,真命题的序号为________(写出所有真命题的序号).【导学号:18490003】【解析】由线面平行及面面平行的判定定理可知,①②正确;当两平面斜交时,在α内的直线可以与交线垂直,故③不对;只有直线l与α内的两条相交直线垂直时,直线l与α垂直,故④不对.【答案】①②三、解答题9.判断下列语句中哪些是命题?哪些不是命题?(1)2+22是有理数;(2)1+12;(3)2100是个大数;(4)968能被11整除;(5)非典型性肺炎是怎样传播的?【解】(1)(2)(4)均是命题;(3)(5)不是命题.因为(1)(2)(4)都可以判断真假,且为陈述句;(3)中的“大数”是一个模糊的概念,无法判断其真假,所以不是命题;(5)中的语句是疑问句,所以不是命题.10.将下列命题改写成“若p,则q”的形式,并判断真假.(1)等腰梯形的两条对角线相等;(2)平行四边形的两条对角线互相垂直.【解】(1)若一个梯形是等腰梯形,则它的两条对角线相等.真命题.(2)若一个四边形是平行四边形,则它的两条对角线互相垂直.假命题.[能力提升]1.若a,b∈R,且a2+b2≠0,则下列命题:①a,b全为0;②a,b不全为0;③a,b全不为0;④a,b至少有一个不为0.其中真命题的个数为()A.0B.1C.2D.3【解析】②④为真命题.【答案】C2.给出下列命题:①在△ABC中,若∠A∠B,则sinAsinB;②函数y=x3在R上既是奇函数又是增函数;③函数y=f(x)的图象与直线x=a至多有一个交点;④若将函数y=sin2x的图象向左平移π4个单位,则得到函数y=sin2x+π4的图象.其中真命题的序号是()A.①②B.①②③C.①③④D.①②③④【解析】①②③是真命题.【答案】B3.设a,b为正实数.现有下列命题:①若a2-b2=1,则a-b1;②若1b-1a=1,则a-b1;③若|a-b|=1,则|a-b|1;④若|a3-b3|=1,则|a-b|1.其中的真命题有________.(写出所有真命题的序号)【解析】将条件方程变形分析.①中,a2-b2=(a+b)(a-b)=1,a,b为正实数,若a-b≥1,则必有a+b1,不合题意,故①正确.②中,1b-1a=a-bab=1,只需a-b=ab即可.如取a=2,b=23满足上式,但a-b=431,故②错.③中,a,b为正实数,所以a+b|a-b|=1,且|a-b|=|(a+b)(a-b)|=|a+b|1,故③错.④中,|a3-b3|=|(a-b)(a2+ab+b2)|=|a-b|(a2+ab+b2)=1.若|a-b|≥1,不妨取ab1,则必有a2+ab+b21,不合题意,故④正确.【答案】①④4.把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)当m14时,方程mx2-x+1=0无实根;(2)平行于同一平面的两条直线平行.【导学号:18490004】【解】(1)命题可改写为:若m14,则mx2-x+1=0无实根.因为当m14时,Δ=1-4m0,所以是真命题.(2)命题可改写为:若两条直线平行于同一平面,则它们互相平行.因为平行于同一平面的两条直线可能平行、相交或异面,所以是假命题.