高中数学人教A版选修22课时训练11变化率与导数113Word版含答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.1.3导数的几何意义[学习目标]1.了解导函数的概念;了解导数与割线斜率之间的关系.2.理解曲线的切线的概念;理解导数的几何意义.3.会求曲线上某点处的切线方程,初步体会以直代曲的意义.[知识链接]如果一个函数是路程关于时间的函数,那么函数在某点处的导数就是瞬时速度,这是函数的实际意义,那么从函数的图象上来考查函数在某点处的导数,它具有怎样的几何意义呢?答设函数y=f(x)的图象如图所示,AB是过点A(x0,f(x0))与点B(x0+Δx,f(x0+Δx))的一条割线,此割线的斜率是ΔyΔx=fx0+Δx-fx0Δx.当点B沿曲线趋近于点A时,割线AB绕点A转动,它的极限位置为直线AD,这条直线AD叫做此曲线在点A处的切线.于是,当Δx→0时,割线AB的斜率无限趋近于过点A的切线AD的斜率k,即k=f′(x0)=limΔx→0fx0+Δx-fx0Δx.[预习导引]1.导数的几何意义函数y=f(x)在点x=x0处的导数的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f′(x0).相应地,切线方程为y-f(x0)=f′(x0)(x-x0).2.函数的导函数当x=x0时,f′(x0)是一个确定的数,则当x变化时,f′(x)是x的一个函数,称f′(x)是f(x)的导函数(简称导数).f′(x)也记作y′,即f′(x)=y′=limΔx→0fx+Δx-fxΔx.要点一过曲线上一点的切线方程例1若曲线y=x3+3ax在某点处的切线方程为y=3x+1,求a的值.解∵y=x3+3ax.∴y′=limΔx→0x+Δx3+3ax+Δx-x3-3axΔx=limΔx→03x2Δx+3xΔx2+Δx3+3aΔxΔx=limΔx→0[3x2+3xΔx+(Δx)2+3a]=3x2+3a.设曲线与直线相切的切点为P(x0,y0),结合已知条件,得3x20+3a=3,x30+3ax0=y0=3x0+1,解得a=1-322,x0=-342.∴a=1-322.规律方法一般地,设曲线C是函数y=f(x)的图象,P(x0,y0)是曲线C上的定点,由导数的几何意义知k=limΔx→0ΔyΔx=limΔx→0fx0+Δx-fx0Δx,继而由点与斜率可得点斜式方程,化简得切线方程.跟踪演练1求曲线y=1x在点2,12处的切线方程.解因为limΔx→0f2+Δx-f2Δx=limΔx→012+Δx-12Δx=limΔx→0-122+Δx=-14.所以这条曲线在点2,12处的切线斜率为-14,由直线的点斜式方程可得切线方程为y-12=-14(x-2),即x+4y-4=0.要点二求过曲线外一点的切线方程例2已知曲线y=2x2-7,求:(1)曲线上哪一点的切线平行于直线4x-y-2=0?(2)曲线过点P(3,9)的切线方程.解y′=limΔx→0ΔyΔx=limΔx→0[2x+Δx2-7]-2x2-7Δx=limΔx→0(4x+2Δx)=4x.(1)设切点为(x0,y0),则4x0=4,x0=1,y0=-5,∴切点坐标为(1,-5).(2)由于点P(3,9)不在曲线上.设所求切线的切点为A(x0,y0),则切线的斜率k=4x0,故所求的切线方程为y-y0=4x0(x-x0).将P(3,9)及y0=2x20-7代入上式,得9-(2x20-7)=4x0(3-x0).解得x0=2或x0=4,所以切点为(2,1)或(4,25).从而所求切线方程为8x-y-15=0或16x-y-39=0.规律方法若题中所给点(x0,y0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.跟踪演练2求过点A(2,0)且与曲线y=1x相切的直线方程.解易知点(2,0)不在曲线上,故设切点为P(x0,y0),由y′|x=x0=limΔx→0limΔx→01x0+Δx-1x0Δx=-1x20,得所求直线方程为y-y0=-1x20(x-x0).由点(2,0)在直线上,得x20y0=2-x0,再由P(x0,y0)在曲线上,得x0y0=1,联立可解得x0=1,y0=1,所求直线方程为x+y-2=0.要点三求切点坐标例3在曲线y=x2上过哪一点的切线,(1)平行于直线y=4x-5;(2)垂直于直线2x-6y+5=0;(3)与x轴成135°的倾斜角.解f′(x)=limΔx→0fx+Δx-fxΔx=limΔx→0x+Δx2-x2Δx=2x,设P(x0,y0)是满足条件的点.(1)因为切线与直线y=4x-5平行,所以2x0=4,x0=2,y0=4,即P(2,4)是满足条件的点.(2)因为切线与直线2x-6y+5=0垂直,所以2x0·13=-1,得x0=-32,y0=94,即P-32,94是满足条件的点.(3)因为切线与x轴成135°的倾斜角,所以其斜率为-1.即2x0=-1,得x0=-12,y0=14,即P-12,14是满足条件的点.规律方法解答此类题目时,所给的直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时要注意解析几何知识的应用,如直线的倾斜角与斜率的关系,平行,垂直等.跟踪演练3已知抛物线y=2x2+1,求(1)抛物线上哪一点的切线平行于直线4x-y-2=0?(2)抛物线上哪一点的切线垂直于直线x+8y-3=0?解设点的坐标为(x0,y0),则Δy=2(x0+Δx)2+1-2x20-1=4x0·Δx+2(Δx)2.∴ΔyΔx=4x0+2Δx.当Δx无限趋近于零时,ΔyΔx无限趋近于4x0.即f′(x0)=4x0.(1)∵抛物线的切线平行于直线4x-y-2=0,∴斜率为4,即f′(x0)=4x0=4,得x0=1,该点为(1,3).(2)∵抛物线的切线与直线x+8y-3=0垂直,∴斜率为8,即f′(x0)=4x0=8,得x0=2,该点为(2,9).1.已知曲线y=f(x)=2x2上一点A(2,8),则点A处的切线斜率为()A.4B.16C.8D.2答案C解析f′(2)=limΔx→0f2+Δx-f2Δx=limΔx→022+Δx2-8Δx=limΔx→0(8+2Δx)=8,即k=8.2.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1答案A解析由题意,知k=y′|x=0=limΔx→00+Δx2+a0+Δx+b-bΔx=1,∴a=1.又(0,b)在切线上,∴b=1,故选A.3.已知曲线y=12x2-2上一点P1,-32,则过点P的切线的倾斜角为()A.30°B.45°C.135°D.165°答案B解析∵y=12x2-2,∴y′=limΔx→012x+Δx2-2-12x2-2Δx=limΔx→012Δx2+x·ΔxΔx=limΔx→0x+12Δx=x.∴y′|x=1=1.∴点P1,-32处切线的斜率为1,则切线的倾斜角为45°.4.已知曲线y=f(x)=2x2+4x在点P处的切线斜率为16.则P点坐标为________.答案(3,30)解析设点P(x0,2x20+4x0),则f′(x0)=limΔx→0fx0+Δx-fx0Δx=limΔx→02Δx2+4x0·Δx+4ΔxΔx=4x0+4,令4x0+4=16得x0=3,∴P(3,30).1.导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=limΔx→0fx0+Δx-fx0Δx=f′(x0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f(x)在点x0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f′(x0)是其导数y=f′(x)在x=x0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.一、基础达标1.下列说法正确的是()A.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处就没有切线B.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处的切线斜率不存在D.若曲线y=f(x)在点(x0,f(x0))处没有切线,则f′(x0)有可能存在答案C解析k=f′(x0),所以f′(x0)不存在只说明曲线在该点的切线斜率不存在,而当斜率不存在时,切线方程也可能存在,其切线方程为x=x0.2.已知y=f(x)的图象如图所示,则f′(xA)与f′(xB)的大小关系是()A.f′(xA)f′(xB)B.f′(xA)f′(xB)C.f′(xA)=f′(xB)D.不能确定答案B解析由导数的几何意义,f′(xA),f′(xB)分别是切线在点A、B处切线的斜率,由图象可知f′(xA)f′(xB).3.在曲线y=x2上切线倾斜角为π4的点是()A.(0,0)B.(2,4)C.(14,116)D.(12,14)答案D解析∵y′=limΔx→0x+Δx2-x2Δx=limΔx→0(2x+Δx)=2x,∴令2x=tanπ4=1,得x=12.∴y=122=14,所求点的坐标为12,14.4.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a等于()A.1B.12C.-12D.-1答案A解析∵y′|x=1=limΔx→0a1+Δx2-a×12Δx=limΔx→0(2a+aΔx)=2a.∴可令2a=2,∴a=1.5.设y=f(x)为可导函数,且满足条件limΔx→0f1-f1-x2x=-2,则曲线y=f(x)在点(1,f(1))处的切线的斜率是________.答案-4解析由limΔx→0f1-f1-x2x=-2,∴12f′(1)=-2,f′(1)=-4.6.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=12x+2,则f(1)+f′(1)=________.答案3解析由在M点的切线方程y=12x+2得f(1)=12×1+2=52,f′(1)=12.∴f(1)+f′(1)=52+12=3.7.求过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线.解曲线y=3x2-4x+2在点M(1,1)处的切线斜率k=y′|x=1=limΔx→031+Δx2-41+Δx+2-3+4-2Δx=limΔx→0(3Δx+2)=2.∴过点P(-1,2)的直线的斜率为2,由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.二、能力提升8.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=()A.2B.3C.4D.5答案A解析易得切点P(5,3),∴f(5)=3,k=-1,即f′(5)=-1.∴f(5)+f′(5)=3-1=2.9.若曲线y=2x2-4x+P与直线y=1相切,则P=________.答案3解析设切点坐标为(x0,1),则f′(x0)=4x0-4=0,∴x0=1,即切点坐标为(1,1).∴2-4+P=1,即P=3.10.设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处的切线倾斜角的范围为0,π4,则点P横坐标的取值范围为________.答案-1,-12解析∵f′(x)=limΔx→0x+Δx2+2x+Δx+3-x2+2x+3Δx=limΔx→02x+2·Δx

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功