高中数学人教A版选修23练习1221组合与组合数公式Word版含解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.以下四个命题,属于组合问题的是()A.从3个不同的小球中,取出2个排成一列B.老师在排座次时将甲、乙两位同学安排为同桌C.在电视节目中,主持人从100位幸运观众中选出2名幸运之星D.从13位司机中任选出两位开同一辆车往返甲、乙两地【解析】从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题.【答案】C2.某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建“村村通”工程,共需建公路的条数为()A.4B.8C.28D.64【解析】由于“村村通”公路的修建,是组合问题.故共需要建C28=28条公路.【答案】C3.组合数Crn(nr≥1,n,r∈N)恒等于()A.r+1n+1Cr-1n-1B.(n+1)(r+1)Cr-1n-1C.nrCr-1n-1D.nrCr-1n-1【解析】nrCr-1n-1=nr·n-1!r-1!n-r!=n!r!n-r!=Crn.【答案】D4.满足方程Cx2-x16=C5x-516的x值为()A.1,3,5,-7B.1,3C.1,3,5D.3,5【解析】依题意,有x2-x=5x-5或x2-x+5x-5=16,解得x=1或x=5;x=-7或x=3,经检验知,只有x=1或x=3符合题意.【答案】B5.异面直线a,b上分别有4个点和5个点,由这9个点可以确定的平面个数是()A.20B.9C.C39D.C24C15+C25C14【解析】分两类:第1类,在直线a上任取一点,与直线b可确定C14个平面;第2类,在直线b上任取一点,与直线a可确定C15个平面.故可确定C14+C15=9个不同的平面.【答案】B二、填空题6.C03+C14+C25+…+C1821的值等于________.【解析】原式=C04+C14+C25+…+C1821=C15+C25+…+C1821=C1721+C1821=C1822=C422=7315.【答案】73157.设集合A={a1,a2,a3,a4,a5},则集合A中含有3个元素的子集共有________个.【解析】从5个元素中取出3个元素组成一组就是集合A的子集,则共有C35=10个子集.【答案】108.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为________.(用数字作答)【解析】从10人中任选出4人作为甲组,则剩下的人即为乙组,这是组合问题,共有C410=210种分法.【答案】210三、解答题9.从1,2,3,4,5,6六个数字中任选3个后得到一个由这三个数组成的最小三位数,则可以得到多少个不同的这样的最小三位数?【解】从6个不同数字中任选3个组成最小三位数,相当于从6个不同元素中任选3个元素的一个组合,故所有不同的最小三位数共有C36=6×5×43×2×1=20个.10.(1)求式子1Cx5-1Cx6=710Cx7中的x;(2)解不等式Cm-183Cm8.【解】(1)原式可化为:x!5-x!5!-x!6-x!6!=7·x!7-x!10·7!,∵0≤x≤5,∴x2-23x+42=0,∴x=21(舍去)或x=2,即x=2为原方程的解.(2)由8!m-1!9-m!3×8!m!8-m!,得19-m3m,∴m27-3m,∴m274=7-14.又∵0≤m-1≤8,且0≤m≤8,m∈N,即7≤m≤8,∴m=7或8.[能力提升]1.已知圆上有9个点,每两点连一线段,若任意两条线的交点不同,则所有线段在圆内的交点有()A.36个B.72个C.63个D.126个【解析】此题可化归为圆上9个点可组成多少个四边形,所有四边形的对角线交点个数即为所求,所以交点为C49=126个.【答案】D2.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法共有()【导学号:97270017】A.140种B.84种C.70种D.35种【解析】可分两类:第一类,甲型1台、乙型2台,有C14·C25=4×10=40(种)取法,第二类,甲型2台、乙型1台,有C24·C15=6×5=30(种)取法,共有70种不同的取法.【答案】C3.对所有满足1≤mn≤5的自然数m,n,方程x2+Cmny2=1所表示的不同椭圆的个数为________.【解析】∵1≤mn≤5,所以Cmn可以是C12,C13,C23,C14,C24,C34,C15,C25,C35,C45,其中C13=C23,C14=C34,C15=C45,C25=C35,∴方程x2+Cmny2=1能表示的不同椭圆有6个.【答案】64.证明:Cmn=nn-mCmn-1.【证明】nn-mCmn-1=nn-m·n-1!m!n-1-m!=n!m!n-m!=Cmn.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功