2.2.2用样本的数字特征估计总体的数字特征课时目标1.会求样本的众数、中位数、平均数、标准差、方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1.众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数.(2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.②当数据个数为偶数时,中位数为排列的最中间的两个数的________.(3)平均数①平均数的定义:如果有n个数x1,x2,…,xn,那么x=____________,叫做这n个数的平均数.②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数.样本平均数:________所有个体的平均数叫样本平均数.2.标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=________________________________________________________________________.(2)方差的求法:标准差的平方s2叫做方差.s2=________________________________________________________________________.一、选择题1.下列说法正确的是()A.在两组数据中,平均值较大的一组方差较大B.平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C.方差的求法是求出各个数据与平均值的差的平方后再求和D.在记录两个人射击环数的两组数据中,方差大的表示射击水平高2.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有()A.abcB.acbC.cabD.cba3.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A.甲B.乙C.甲、乙相同D.不能确定4.一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是()A.13s2B.s2C.3s2D.9s25.如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为()A.84,4.84B.84,1.6C.85,1.6D.85,0.46.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为xA和xB,样本标准差分别为sA和sB则()A.xAxB,sAsBB.xAxB,sAsBC.xAxB,sAsBD.xAxB,sAsB题号123456答案二、填空题7.已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.8.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲108999乙1010799如果甲、乙两人只能有1人入选,则入选的应为________.9.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.三、解答题10.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:平均数方差中位数命中9环及9环以上的次数甲乙(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11.下面是一家快餐店所有工作人员(共7人)一周的工资表:总经理大厨二厨采购员杂工服务员会计3000元450元350元400元320元320元410元(1)计算所有人员一周的平均工资;(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:统计量组别平均成绩标准差第一组906第二组804求全班的平均成绩和标准差.1.平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2.在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3.极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2.2.2用样本的数字特征估计总体的数字特征知识梳理1.(1)最多(2)中间①中间位置的②平均数(3)①x1+x2+…+xnn②总体中样本中2.(1)1n[x1-x2+x2-x2+…+xn-x2](2)1n[(x1-x)2+(x2-x)2+…+(xn-x)2]作业设计1.B[A中平均值和方差是数据的两个特征,不存在这种关系;C中求和后还需取平均数;D中方差越大,射击越不平稳,水平越低.]2.D[由题意a=110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b=16,c=18,∴cba.]3.B[方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.093.72,故选B.]4.D[s20=1n[9x21+9x22+…+9x2n-n(3x)2]=9·1n(x21+x22+…+x2n-nx2)=9·s2(s20为新数据的方差).]5.C[由题意x=15(84+84+86+84+87)=85.s2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6.B[样本A数据均小于或等于10,样本B数据均大于或等于10,故xAxB,又样本B波动范围较小,故sAsB.]7.91解析由题意得8.甲解析x甲=9,2S甲=0.4,x乙=9,2S乙=1.2,故甲的成绩较稳定,选甲.9.0.19解析这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19.10.解由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为:2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x甲=110×(5+6×2+7×4+8×2+9)=7010=7(环),x乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+9)=5.4.根据以上的分析与计算填表如下:平均数方差中位数命中9环及9环以上的次数甲71.271乙75.47.53(2)①∵平均数相同,2S甲2S乙,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11.解(1)平均工资即为该组数据的平均数x=17×(3000+450+350+400+320+320+410)=17×5250=750(元).(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x′=16×(450+350+400+320+320+410)=16×2250=375(元).这个平均工资能代表一般工作人员一周的收入水平.12.解设第一组20名学生的成绩为xi(i=1,2,…,20),第二组20名学生的成绩为yi(i=1,2,…,20),依题意有:x=120(x1+x2+…+x20)=90,y=120(y1+y2+…+y20)=80,故全班平均成绩为:140(x1+x2+…+x20+y1+y2+…+y20)=140(90×20+80×20)=85;又设第一组学生成绩的标准差为s1,第二组学生成绩的标准差为s2,则s21=120(x21+x22+…+x220-20x2),s22=120(y21+y22+…+y220-20y2)(此处,x=90,y=80),又设全班40名学生的标准差为s,平均成绩为z(z=85),故有s2=140(x21+x22+…+x220+y21+y22+…+y220-40z2)=140(20s21+20x2+20s22+20y2-40z2)=12(62+42+902+802-2×852)=51.s=51.所以全班同学的平均成绩为85分,标准差为51.