第二章2.3第1课时一、选择题1.设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=()A.-6B.-4C.-2D.2[答案]A[解析]本题考查数列的基础知识和运算能力.S3=4a3a7=-2⇒3a1+3d=4a1+8da1+6d=-2⇒a1=10d=-2.∴a9=a1+8d=-6.2.四个数成等差数列,S4=32,a2a3=,则公差d等于()A.8B.16C.4D.0[答案]A[解析]∵a2a3=,∴a1+da1+2d=13,∴d=-2a1.又S4=4a1+4×32d=-8a1=32,∴a1=-4,∴d=8.3.等差数列{an}中,a3+a7-a10=8,a11-a4=14.记Sn=a1+a2+a3+…+an,则S13=()A.168B.156C.152D.286[答案]D[解析]∵a3+a7-a10=8a11-a4=14,∴a1-d=87d=14,∴d=2a1=10,∴S13=13a1+13×122d=286.4.在等差数列{an}和{bn}中,a1=25,b1=15,a100+b100=139,则数列{an+bn}的前100项的和为()A.0B.4475C.8950D.10000[答案]C[解析]设cn=an+bn,则c1=a1+b1=40,c100=a100+b100=139,{cn}是等差数列,∴前100项和S100=100c1+c1002=100×40+1392=8950.5.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是()A.5B.4C.3D.2[答案]C[解析]设等差数列为{an},公差为d,则a1+a3+a5+a7+a9=15a2+a4+a6+a8+a10=30,∴5d=15,∴d=3.6.设Sn是等差数列{an}的前n项和,若a7a5=913,则S13S9=()A.1B.-1C.2D.12[答案]A[解析]S13S9=13a79a5=139×913=1,故选A.二、填空题7.已知数列{an}的通项公式an=-5n+2,则其前n项和Sn=________.[答案]-5n2+n2[解析]∵an=-5n+2,∴an-1=-5n+7(n≥2),∴an-an-1=-5n+2-(-5n+7)=-5(n≥2).∴数列{an}是首项为-3,公差为-5的等差数列.∴Sn=na1+an2=n-5n-12=-5n2+n2.8.设等差数列{an}的前n项和为Sn,若S9=72,则a2+a4+a9=________.[答案]24[解析]∵S9=9·a1+a92=72,∴a1+a9=16,即a1+a1+8d=16,∴a1+4d=8,又a2+a4+a9=a1+d+a1+3d+a1+8d=3(a1+4d)=3×8=24.三、解答题9.已知等差数列{an}.(1)a1=56,a15=-32,Sn=-5,求n和d;(2)a1=4,S8=172,求a8和D.[解析](1)∵a15=56+(15-1)d=-32,∴d=-16.又Sn=na1+nn-12·d=-5,解得n=15,n=-4(舍).(2)由已知,得S8=8a1+a82=84+a82,解得a8=39,又∵a8=4+(8-1)d=39,∴d=5.10.设{an}是等差数列,前n项和记为Sn,已知a10=30,a20=50.(1)求通项an;(2)若Sn=242,求n的值.[解析](1)设公差为d,则a20-a10=10d=20,∴d=2.∴a10=a1+9d=a1+18=30,∴a1=12.∴an=a1+(n-1)d=12+2(n-1)=2n+10.(2)Sn=na1+an2=n2n+222=n2+11n=242,∴n2+11n-242=0,∴n=11.一、选择题1.等差数列{an}的前n项和记为Sn,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15[答案]C[解析]∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13=13a1+a132=13a7为常数.2.等差数列{an}的前n项和为Sn,若S2=2,S4=10,则S6等于()A.12B.18C.24D.42[答案]C[解析]∵S2,S4-S2,S6-S4成等差数列,∴2(S4-S2)=S2+S6-S4,∴2(10-2)=2+S6-10,∴S6=24.3.设Sn是等差数列{an}的前n项和,若S3S6=13,则S6S12等于()A.310B.13C.18D.19[答案]A[解析]据等差数列前n项和性质可知:S3,S6-S3,S9-S6,S12-S9仍成等差数列.设S3=k,则S6=3k,S6-S3=2k,∴S9-S6=3k,S12-S9=4k,∴S9=S6+3k=6k,S12=S9+4k=10k,∴S6S12=3k10k=310.4.(2013·新课标Ⅰ理,7)设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3B.4C.5D.6[答案]C[解析]本题考查数列的前n项和Sn与通项an的关系及等差数列的定义.Sm-Sm-1=am=2,Sm+1-Sm=am+1=3,∴d=am+1-am=3-2=1.Sm=a1m+mm-12·1=0,①am=a1+(m-1)·1=2,∴a1=3-m.②②代入①得3m-m2+m22-m2=0,∴m=0(舍去),m=5,故选C.二、填空题5.已知等差数列{an}的前n项和为Sn,若OB→=a1OA→+a200OC→,且A、B、C三点共线(该直线不过原点O),则S200=________.[答案]100[解析]∵OB→=a1OA→+a200OC→,且A、B、C三点共线,∴a1+a200=1,∴S200=200×a1+a2002=100.6.已知数列{an}的前n项和为Sn,且Sn=2an-2,则S3等于________.[答案]14[解析]对于Sn=2an-2,当n=1时,有a1=2a1-2,解得a1=2;当n=2时,有S2=2a2-2,即a1+a2=2a2-2,所以a2=a1+2=4;当n=3时,有S3=2a3-2,即a1+a2+a3=2a3-2,所以a3=a2+a1+2,又a1=2,a2=4,则a3=8,所以S3=2a3-2=14.三、解答题7.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.[解析]设等差数列{an}的公差为d,前n项和为Sn,则Sn=na1+nn-12D.由已知得10a1+10×92d=100,①100a1+100×992d=10.②①×10-②整理得d=-1150,代入①得,a1=1099100,∴S110=110a1+110×1092d=110×1099100+110×1092×-1150=1101099-109×11100=-110.8.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{Snn}的前n项和,求数列{Snn}的前n项和Tn.[解析]设等差数列{an}的公差为d,则Sn=na1+12n(n-1)D.∵S7=7,S15=75,∴7a1+21d=715a1+105d=75,即a1+3d=1a1+7d=5,解得a1=-2,d=1.∴Snn=a1+12(n-1)d=-2+12(n-1),∵Sn+1n+1-Snn=12,∴数列{Snn}是等差数列,其首项为-2,公差为12,∴Tn=14n2-94n.