基于PMU的电力系统状态估计及可观测性研究薛辉燕山大学2008年1月国内图书分类号:TM764国际图书分类号:621.3工学硕士学位论文基于PMU的电力系统状态估计及可观测性研究硕士研究生薛辉导师贾清泉教授申请学位级别工学硕士学科、专业电力系统及其自动化所在单位电气工程学院授予学位单位::::::燕山大学ClassifiedIndex:TM764U.D.C.:621.3DissertationfortheMasterDegreeinEngineeringPOWERSYSTEMSTATEESTIMATIONANDOBSERVABILITYBASEDONPMUCandidate:XueHuiSupervisor:Prof.JiaQingquanAcademicDegreeAppliedfor:MasterofEngineeringSpeciality:PowerSystemandAtuomationUniversity:YanshanUniversity燕山大学硕士学位论文原创性声明本人郑重声明:此处所提交的硕士学位论文《基于PMU的电力系统状态估计及可观测性研究》,是本人在导师指导下,在燕山大学攻读硕士学位期间独立进行研究工作所取得的成果。据本人所知,论文中除已注明部分外不包含他人已发表或撰写过的研究成果。对本文的研究工作做出重要贡献的个人和集体,均已在文中以明确方式注明。本声明的法律结果将完全由本人承担。作者签名:日期:年月日燕山大学硕士学位论文使用授权书《基于PMU的电力系统状态估计及可观测性研究》系本人在燕山大学攻读硕士学位期间在导师指导下完成的硕士学位论文。本论文的研究成果归燕山大学所有,本人如需发表将署名燕山大学为第一完成单位及相关人员。本人完全了解燕山大学关于保存、使用学位论文的规定,同意学校保留并向有关部门送交论文的复印件和电子版本,允许论文被查阅和借阅。本人授权燕山大学,可以采用影印、缩印或其他复制手段保存论文,可以公布论文的全部或部分内容。保密□,在年解密后适用本授权书。本学位论文属于不保密□。(请在以上相应方框内打“√”)作者签名:日期:年月日导师签名:日期:年月日摘要I摘要随着相角测量装置(PhasorMeasurementUnit,PMU)在电力系统状态估计中的广泛应用,基于PMU量测数据的状态估计方法有了快速的发展,估计的精确性和收敛性有了明显的改善。另一方面,基于SCADA量测数据的状态估计方法已经不能很好的满足日益复杂的电力系统运行需要。基于PMU量测数据和SCADA量测数据融合进行电网状态估计的方法已经显示出了其优越性。在现有的各种估计方法基础上,本文研究了一种将PMU量测数据融合SCADA量测数据进行高频率状态估计的改进方法。该方法通过预测SCADA系统的潮流量测值,并将其预测值结合当前时刻的PMU量测值对电网进行了高频率的状态估计。通过算例证明,与传统估计方法相比,该方法改善了状态估计的精确性,减少了迭代次数,细致的描绘了电网状态的变化过程,为调度中心下一步的决策提供了大量的依据。尽管PMU装置可以直接测量节点电压相量和其关联支路电流相量,但由于价格和技术等原因,在实际运行中还不能完全取代SCADA系统,针对目前这两种系统并存且互为补充的局面,本文分析了一些关于如何配置PMU装置使系统达到快速可观性的方法,研究了在电力系统可观测性的前提下,如何优化配置PMU装置使其和SCADA量测数据充分融合达到系统的快速可观测。通过算例验证,该方法通过合理的布置PMU装置,简化了PMU装置的数目,达到了系统的快速可观测。关键词状态估计;相角测量单元;可观测性;最优配置燕山大学工学硕士学位论文IIAbstractWiththedevelopmentofPMUandit’sextensiveapplicationinpowersystem,themethodofstateestimationprogressquicklyandimprovetheresult’saccuracyandconvergence.ThetraditionalstateestimationbasedonSCADAmeasurementscannotmeettheincreasinglycomplicatedpowersystems,sothestateestimationmethodbasedonPMU-MeasuredDataandSCADADatatogetherhadshownit’ssuperiority.Basedonvariousstateestimationcurrently,ahigh-frequencystateestimationmethodbasedonMergingPMU-MeasuredDataintoSCADA-MeasuredDataisstudiedinthispaper.Thisnewmethodnotonlycanforecastthepowerflow,butalsocanprogressthehigh-frequencystateestimationcombiningPMU-MeasuredDatawithSCADA-MeasuredData.Testedbyexampleandresults,thenewmethodimprovestheaccuracyofresults,reducesthenumberofiteration,anddescribesthevarietyprocessofpowersystemsstateaccuratelycomparedtotraditionalmethods,whichprovidemoreinformationforcontrolcentertomakethenextdecisionmaking.AlthoughPMUcanmeasurethenode’svoltagephasorandassociatedbranchs’currentphasordirectly,itcan’tsubstituteSCADAentirelybecauseit’spriceandtechnology.ForthecomplexionthatthePMUandSCADAwillbeco-existandco-complementarityatpresent,thispaperanalysessomemethodabouthowtooptimizePMUtorealizethefastobservabilityofpowersystem,proposesanewmethodthathowtooptimizePMUandmakethebestofit’smeasurementsandSCADAmeasurementstorealizethesystem’sobservabilityunderthepreconditionoffastobservability.Bytheanalysesofexamples,thisnewmethoddecreasesthenumberofPMUandmakesthesystemobservableviadisposingPMUSreasonably.AbstractIIIKeywordsStateestimation;Phasormeasurementunit;Observability;Optimalplacement燕山大学工学硕士学位论文IV目录V目录摘要················································································································IAbstract·············································································································II第1章绪论·······································································································11.1电力系统状态估计·················································································11.1.1电力系统状态估计的概念及必要性················································11.1.2电力系统状态估计与常规潮流的关系············································21.1.3电力系统状态估计的发展现状························································41.2电力系统可观测性的研究·····································································61.2.1电力系统可观测性···········································································61.2.2电力系统可观测性的发展现状························································71.3本文主要工作·························································································8第2章电力系统状态估计基本理论·······························································92.1状态估计的数学描述·············································································92.1.1量测系统的数学描述········································································92.1.2电力网络的数学描述·····································································102.1.3电力系统网络方程·········································································112.2加权最小二乘法状态估计基本算法····················································122.3快速解耦状态估计基本算法·······························································142.4基于Kalman滤波原理的电力系统动态状态估计算法·····················172.5本章小结·······························································································19第3章相角测量在状态估计中的应用·························································203.1相角测量发展··························································