高考网不等式的证明章节试题一.习题:1.求证:221423aaa2.abc、、为正数,求证:22333()()abababcabc3.已知:abab001,,,求证:()()aabb112544.已知:abcR、、,求证:121212111abcabbcca5.已知:abcR、、,求证:abcabcabcbccaab2226.设xy00,,证明不等式:()()xyxy221233137.已知:abc1,求证:abbcca13二.练习:1.若ab0,求证:lglgabab112.abR、,记PabQab2,,则PQ、的大小关系为()A.PQB.PQC.PQD.PQ3.ab00,,则mablg()1与nab1211[lg()lg()]的大小关系是()A.mnB.mnC.mnD.mn4.实数ab、满足什么条件时,abab333?5.若xa,比较xax3213与5923axa的大小。【试题答案】一.例题:1.求证:221423aaa证明:()()221423aaa高考网21211112112221121121122112121204323332222222()()()()()()()()[()]()[()()()]()()()[()]aaaaaaaaaaaaaaaaaaaaaaaaa另:左右aaaaaaaa43224222222111()()2.证明:右左cabcab32()cabababcabcabc3330333证毕法二:分析法:要证不等式成立,即证cababc233(*)而cabcababcabababc23333即(*)成立证毕3.法一:()()aabbabbaabab111()()(*)ababbaab122ab00,baab21()(当且仅当ab,“”成立)又12abab012ab(当且仅当ab,“”成立)1212abab,abab112232()()abab19422(*)()()12得:()()aabb119422254高考网法二:要证()()aabb11254只需证444252222ababab()ababab11222只需证441242522ababab()即4338022abab(*)只需证ab14或ab8ababab0012,,ab14又ab8不可能只有ab14,(*)成立原不等式成立4.证法一:141414440222abababbaababababababab()()()同理:14141402bcbcbcbcbc()()14141402accacaacca()()三式相加即可法二:1414214141211ababab()又abab21212abab()(1)、(2)及传递性得14141abab同理:14141bcbc14141acac5.证明:左右abcabcbcacab222abcabacbcbacacb()()()()()()()()()abacbcabacbc此不等式是轮换对称式不妨设abc0高考网10,()abab1同理:()acac1()bcbc11左右证毕6.证法一:要证原不等式只需证:()()xyxy223332只需证:32222233xyxyxy()只需证:xyxy2223显然xy00,xyxyxy22223证法二:()()xyxyxyxy2236622223xyxyxyxyxyxy663366333326200()(),()()xyxy221233137.证法一:要证abbcca13只要证abbccaabc()23即证333222222abbccaabcabbcca就是abcabbcca222abcabbcca222成立(略)abbcca13证法二:abcabbcca22222222212[()()()]12222()abbccaabbcca()()abcabbcca23abc1高考网abbcca13证法三:abbccabacca()[()]()()()()()()()[()]12343423131322222acaccaacaccaacaccaacacac二.练习:1.证:abababbabbabbb1111110()()()()abab11两边取以10为底的对数得:lglgabab112.DPababQab2222,PQababab2222220()()3.Cnabmababababababnmlg[()()]lg()()()()()11111121222,4.解:abab333由定理5:()()abab33333即()()abab3330右左333333abab()亦即30333abab()abababab3333330000或abababab00且或且即abbaab000或或5.解:()()xaxaxa32231359()()xaaxaxa33225138高考网()()()()xaxaxaaxaxa2258()[()]()[()]xaxaxaaxaxaxaa222225825xaxa0xa2与5a不同时为0()xaa25022xa时,xaxaxa32231359xa时,xaxaxa32231359