高二理科数学下学期期末试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高二理科数学下学期期末试卷(理科)班级学号姓名分数第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(2)12iii等于(D)A.iB.iC.1D.12.函数1()fxxx的图像关于(C)A.y轴对称B.直线xy对称C.坐标原点对称D.直线xy对称3.记等差数列{}na的前n项和为nS,若112a,420S,则6S(D)A.16B.24C.36D.484.已知a,b都是实数,那么“22ba”是“ab”的D(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件5.在△ABC中,角ABC的对边分别为a、b、c,若(a2+c2-b2)tanB=3ac,则角B的值为DA.6B.3C.6或56D.3或236.设,MN是球心O的半径OP上的两点,且NPMNOM,分别过,,NMO作垂直于OP的面截球得三个圆,则这三个圆的面积之比为:(D)(A)3,5,6(B)3,6,8(C)5,7,9(D)5,8,97.在ABC△中,ABc,ACb.若点D满足2BDDC,则AD(A)A.2133bcB.5233cbC.2133bcD.1233bc若函数9.若双曲线12222byax的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是D(A)3(B)5(C)3(D)58.()yfx的值域是1[,3]2,则函数1()()()Fxfxfx的值域是BA.1[,3]2B.10[2,]3C.510[,]23D.10[3,]310.已知函数3()2xfx,1()fx是()fx的反函数,若16mn(mn+R,),则11()()fmfn的值为(A)A.2B.1C.4D.1011.设曲线11xyx在点(32),处的切线与直线10axy垂直,则a(D)A.2B.12C.12D.212.函数y=lncosx(-2π<x<)2的图象是A第Ⅱ卷(非选择题共90分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效.......................二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.在)5)(4)(3)(2)(1(xxxxx的展开式中,含4x的项的系数是。-1514.211lim______34xxxx.1515.已知随机变量服从正态分布N(3,a2),则P(3)=。1216.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有种.(用数字作答).96三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17(本小题满分12分)已知函数22s(incoss1)2cofxxxx(,0xR)的最小值正周期是2.(Ⅰ)求的值;(Ⅱ)求函数()fx的最大值,并且求使()fx取得最大值的x的集合.(17)本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数sin()yAx的性质等基础知识,考查基本运算能力.满分12分.(Ⅰ)解:242sin224sin2cos4cos2sin222cos2sin12sin22cos12xxxxxxxxf由题设,函数xf的最小正周期是2,可得222,所以2.(Ⅱ)由(Ⅰ)知,244sin2xxf.当kx2244,即Zkkx216时,44sinx取得最大值1,所以函数xf的最大值是22,此时x的集合为Zkkxx,216|.18.(本小题共13分)甲、乙等五名奥运志愿者被随机地分到ABCD,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量为这五名志愿者中参加A岗位服务的人数,求的分布列.解:(Ⅰ)记甲、乙两人同时参加A岗位服务为事件AE,那么3324541()40AAPECA,即甲、乙两人同时参加A岗位服务的概率是140.(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E,那么4424541()10APECA,所以,甲、乙两人不在同一岗位服务的概率是9()1()10PEPE.(Ⅲ)随机变量可能取的值为1,2.事件“2”是指有两人同时参加A岗位服务,则235334541(2)4CAPCA.所以3(1)1(2)4PP,的分布列是13P3414·····················································································································································12分3.如图,在三棱锥PABC中,2ACBC,90ACB,APBPAB,PCAC.(Ⅰ)求证:PCAB;(Ⅱ)求二面角BAPC的大小;(Ⅲ)求点C到平面APB的距离.解法一:(Ⅰ)取AB中点D,连结PDCD,.APBP,PDAB.ACBC,CDAB.PDCDD,AB平面PCD.PC平面PCD,PCAB.(Ⅱ)ACBC,APBP,APCBPC△≌△.又PCAC,PCBC.又90ACB,即ACBC,且ACPCC,ACBDPACBEPACBPBC平面PAC.取AP中点E.连结BECE,.ABBP,BEAP.EC是BE在平面PAC内的射影,CEAP.BEC是二面角BAPC的平面角.在BCE△中,90BCE,2BC,362BEAB,6sin3BCBECBE.二面角BAPC的大小为6arcsin3.(Ⅲ)由(Ⅰ)知AB平面PCD,平面APB平面PCD.过C作CHPD,垂足为H.平面APB平面PCDPD,CH平面APB.CH的长即为点C到平面APB的距离.由(Ⅰ)知PCAB,又PCAC,且ABACA,PC平面ABC.CD平面ABC,PCCD.在RtPCD△中,122CDAB,362PDPB,222PCPDCD.332PDCDPCCH.点C到平面APB的距离为233.解法二:(Ⅰ)ACBC,APBP,APCBPC△≌△.又PCAC,PCBC.ACBCC,PC平面ABC.AB平面ABC,ACBDPHPCAB.(Ⅱ)如图,以C为原点建立空间直角坐标系Cxyz.则(000)(020)(200)CAB,,,,,,,,.设(00)Pt,,.22PBAB,2t,(002)P,,.取AP中点E,连结BECE,.ACPC,ABBP,CEAP,BEAP.BEC是二面角BAPC的平面角.(011)E,,,(011)EC,,,(211)EB,,,33622cosEBECEBECBEC.二面角BAPC的大小为3arccos3.(Ⅲ)ACBCPC,C在平面APB内的射影为正APB△的中心H,且CH的长为点C到平面APB的距离.如(Ⅱ)建立空间直角坐标系Cxyz.2BHHE,点H的坐标为222333,,.233CH.点C到平面APB的距离为233.20.(本小题满分12分)在数列{}na中,11a,22a,且11(1)nnnaqaqa(2,0nq).(Ⅰ)设1nnnbaa(*nN),证明{}nb是等比数列;ACBPzxyHE(Ⅱ)求数列{}na的通项公式;本小题主要考查等差数列、等比数列的概念、等比数列的通项公式及前n项和公式,考查运算能力和推理论证能力及分类讨论的思想方法.满分12分.(Ⅰ)证明:由题设11(1)nnnaqaqa(2n),得11()nnnnaaqaa,即1nnbqb,2n.又1211baa,0q,所以{}nb是首项为1,公比为q的等比数列.(Ⅱ)解法:由(Ⅰ)211aa,32aaq,……21nnaaq,(2n).将以上各式相加,得211nnaaqq(2n).所以当2n时,11,,.1,111nnqqqanq上式对1n显然成立.21.在直角坐标系xOy中,点P到两点(03),,(03),的距离之和等于4,设点P的轨迹为C,直线1ykx与C交于A,B两点.(Ⅰ)写出C的方程;(Ⅱ)若OAOB,求k的值;(Ⅲ)若点A在第一象限,证明:当k0时,恒有|OA||OB|.20.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分.解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以(03)(03),,,为焦点,长半轴为2的椭圆.它的短半轴222(3)1b,故曲线C的方程为2214yx.·······························································································3分(Ⅱ)设1122()()AxyBxy,,,,其坐标满足22141.yxykx,消去y并整理得22(4)230kxkx,故1212222344kxxxxkk,.·················································································5分若OAOB,即12120xxyy.而2121212()1yykxxkxx,于是22121222233210444kkxxyykkk,化简得2410k,所以12k.······················································································8分(Ⅲ)2222221122()OAOBxyxy22221212()4(11)xxxx12123()()xxxx1226()4kxxk.因为A在第一象限,故10x.由12234xxk知20x,从而120xx.又0k,故220OAOB,即在题设条件下,恒有OAOB.22.(本小题满分14分)已知函数432()2fxxaxxb(xR),其中Rba,.(Ⅰ)当103a时,讨论函数()fx的单调性;(Ⅱ)若函数()fx仅在0x处有极值,求a的取值范围;(Ⅲ)若对于任意的[2,2]a,不等式1fx在[1,1]上恒成立,求b的取值范围.本小题主要考查利用导数研究函数的单调性、函数的最大值、解不等式等基础知识,考查综合分析和解决问题的能力.满分14分.(Ⅰ)解:322()434(434)fxxaxxxxax.当103a时,2()(4104)2(21)(2)fxxxxxxx.令()0fx,解得10x,212x,32x.当x变化时,()fx,()fx的变化情况如下表:x(,0)01(0,)2121(,2)22(2,)()fx-0+0-0+()fx↘极小值↗极大值↘极小值↗所以()f

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功