导数及其应用知识点总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

导数及其应用知识点总结一.导数概念的引入1.导数的物理意义:瞬时速率。一般的,函数()yfx在0xx处的瞬时变化率是000()()limxfxxfxx,我们称它为函数()yfx在0xx处的导数,记作0()fx或0|xxy,即0()fx=000()()limxfxxfxx2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点nP趋近于P时,直线PT与曲线相切。容易知道,割线nPP的斜率是00()()nnnfxfxkxx,当点nP趋近于P时,函数()yfx在0xx处的导数就是切线PT的斜率k,即0000()()lim()nxnfxfxkfxxx3.导函数:当x变化时,()fx便是x的一个函数,我们称它为()fx的导函数.()yfx的导函数有时也记作y,即0()()()limxfxxfxfxx二.导数的计算基本初等函数的导数公式:1若()fxc(c为常数),则()0fx;2若()fxx,则1()fxx;3若()sinfxx,则()cosfxx4若()cosfxx,则()sinfxx;5若()xfxa,则()lnxfxaa6若()xfxe,则()xfxe7若()logxafx,则1()lnfxxa8若()lnfxx,则1()fxx导数的运算法则1.[()()]()()fxgxfxgx2.[()()]()()()()fxgxfxgxfxgx3.2()()()()()[]()[()]fxfxgxfxgxgxgx复合函数求导()yfu和()ugx,称则y可以表示成为x的函数,即(())yfgx为一个复合函数(())()yfgxgx三.导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)ab内(1)如果()0fx,那么函数()yfx在这个区间单调递增;(2)如果()0fx,那么函数()yfx在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()yfx的极值的方法是:(1)如果在0x附近的左侧()0fx,右侧()0fx,那么0()fx是极大值(2)如果在0x附近的左侧()0fx,右侧()0fx,那么0()fx是极小值;4.函数的最大(小)值与导数求函数()yfx在[,]ab上的最大值与最小值的步骤:(1)求函数()yfx在(,)ab内的极值;(2)将函数()yfx的各极值与端点处的函数值()fa,()fb比较,其中最大的是一个最大值,最小的是最小值.推理与证明考点一合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1)找出两类事物的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三数学归纳法1.它是一个递推的数学论证方法.2.步骤:A.命题在n=1(或0n)时成立,这是递推的基础;B.假设在n=k时命题成立;C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n=0n,且nN)结论都成立。

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功