..初中数学一次函数基础练习与常考题和中等题(含解析)一.选择题(共13小题)1.下列函数是一次函数的是()A.﹣x2+y=0B.y=4x2﹣1C.y=D.y=3x2.下列说法中错误的是()A.一次函数是正比例函数B.函数y=|x|+3不是一次函数C.正比例函数是一次函数D.在y=kx+b(k、b都是不为零的常数)中,y﹣b与x成正比例3.下列函数关系中,一定是一次函数的是()A.y=x﹣1B.y=﹣x2C.y=3x﹣2D.y=kx4.下列说法中,正确的个数是()(1)正比例函数一定是一次函数;(2)一次函数一定是正比例函数;(3)速度一定,路程s是时间t的一次函数;(4)圆的面积是圆的半径r的正比例函数.A.1个B.2个C.3个D.4个5.下列函数中,是一次函数的个数为()A.3个B.1个C.4个D.2个6.若函数y=(m﹣5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()A.m>﹣B.m>5C.m=﹣D.m=57.若函数是正比例函数,则m的值是()A.2B.﹣2C.±2D.18.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()..A.B.C.D.9.由A(3,2),B(﹣1,﹣3)两点确定的直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.函数y=﹣mx(m>0)的图象是()A.B.C.D.11.直线与直线y2=kx+k在同一坐标系中的位置可能是图()A.B.C.D.12.已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值围是()A.k>2B.k<2C.﹣1≤k≤2D.﹣1≤k<213.若ab<0,bc<0,则直线ax+by=c不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共11小题)14.当k=时,y=(k+1)+k是一次函数;当m=时,y=(m﹣1)是正比例函数.15.已知正比例函数y=(m﹣1)的图象在第二、四象限,则m的值为,函数的解析式为.16.根据一次函数y=﹣3x﹣6的图象,当函数值大于零时,x的围是.17.已知一次函数y=﹣2x+3中,自变量取值围是﹣3≤x≤8,则当x=时,y有最大值...18.函数y=﹣2x+4的图象经过象限,它与两坐标轴围成的三角形面积为,周长为.19.正比例函数的图象一定经过点.20.若一次函数y=ax+1﹣a中,它的图象经过一、二、三象限,则|a﹣1|+=.21.一次函数y=kx+b的图象如图所示,则k0.22.若abc<0,且函数y=的图象不经过第四象限,则点(a+b,c)所在象限为第象限.23.若三点(1,0),(2,P),(0,﹣1)在一条直线上,则P的值为.24.已知a、b都是常数,一次函数y=(m﹣2)x+(m+3)经过点(,),则这个一次函数的解析式为.三.解答题(共16小题)25.已知+(b﹣2)2=0,则函数y=(b+3)x﹣a+1﹣2ab+b2是什么函数?当x=﹣时,函数值y是多少?26.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值围﹣4≤y≤2,求x的取值围.27.在同一坐标系中作出,y=2x+1,y=3x的图象...28.(1)判断下列各点是否在直线y=2x+6上.(是的打“√”,不是的打“×”)(﹣5,﹣4),;(﹣7,20),;(,1),;(,),.(2)这条直线与x轴的交点坐标是,与y轴的交点坐标是.29.求直线2x+y+1=0关于x轴成轴对称的图形的解析式.30.已知点Q与P(2,3)关于x轴对称,一个一次函数的图象经过点Q,且与y轴的交点M与原点距离为5,求这个一次函数的解析式.31.已知点B(3,4)在直线y=﹣2x+b上,试判断点P(2,6)是否在图象上.32.已知一个一次函数y=kx+b,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.求:(1)k和b的值;(2)当x=﹣3时,y的值.33.已知△ABC,∠BAC=90°,AB=AC=4,BD是AC边上的中线,分别以AC、AB所在直线为x轴,y轴建立直角坐标系(如图)(1)求直线BD的函数关系式.(2)直线BD上是否存在点M,使AM=AC?若存在,求点M的坐标;若不存在,说明理由.34.如图,已知点A(2,4),B(﹣2,2),C(4,0),求△ABC的面积...35.如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,直线AB上有一点Q在第一象限且到y轴的距离为2.(1)求点A、B、Q的坐标,(2)若点P在坐x轴上,且PO=24,求△APQ的面积.36.如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限作等腰Rt△ABC,∠BAC=90∘,求:(1)A、B、C三点的坐标.(2)四边形AOBC的面积.37.若直线分别交x轴、y轴于A、B两点,点P是该直线上的一点,PC⊥x轴,C为垂足.(1)求△AOB的面积.(2)如果四边形PCOB的面积等△AOB的面积的一半,求出此时点P的坐标...38.已知,直线与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限作等腰Rt△ABC,∠BAC=90°.且点P(1,a)为坐标系中的一个动点.(1)求三角形ABC的面积S△ABC;(2)请说明不论a取任何实数,三角形BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,数a的值.39.如图所示,正方形OABC的顶点为O(0,0),A(1,0),B(1,1),C(0,1).(1)判断直线y=﹣2x+与正方形OABC是否有交点,并求交点坐标.(2)将直线y=﹣2x+进行平移,平移后恰好能把正方形OABC分为面积相等的两部分,请求出平移后的直线解析式.40.如图一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,求直线AB的一次函数解析式及△AOC的面积.....初中数学一次函数基础练习与常考题和中等题(含解析)参考答案与试题解析一.选择题(共13小题)1.下列函数是一次函数的是()A.﹣x2+y=0B.y=4x2﹣1C.y=D.y=3x【分析】根据一次函数的定义求解.【解答】解:A、由﹣x2+y=0,可得y=x2,自变量次数不为1,故不是一次函数,错误;B、自变量次数不为1,故不是一次函数,错误;C、自变量次数不为1,故不是一次函数,错误;D、正确.故选D.【点评】在函数y=kx+b中,当k、b为常数,k≠0,且自变量x的次数为1时,该函数为一次函数.该函数是否为一次函数与b的取值无关.2.下列说法中错误的是()A.一次函数是正比例函数B.函数y=|x|+3不是一次函数C.正比例函数是一次函数D.在y=kx+b(k、b都是不为零的常数)中,y﹣b与x成正比例【分析】根据一次函数和正比例函数的定义,以及二者之间的关系对选项一一进行分析.【解答】解:A、当b=0时,一次函数图象变为正比例函数,正比例函数是特殊的一次函数.故此选项错误.B、函数y=|x|+3不符合一次函数的定义.故此选项正确.C、正比例函数是特殊的一次函数.故此选项正确...D、在y=kx+b(k、b都是不为零的常数)中,y﹣b与x成正比例,符合正比例函数定义.故此选项正确.故选A.【点评】本题主要考查了一次函数的定义,一次函数和正比例函数的关系:正比例函数是特殊的一次函数.3.下列函数关系中,一定是一次函数的是()A.y=x﹣1B.y=﹣x2C.y=3x﹣2D.y=kx【分析】根据一次函数的定义条件解答.【解答】解:A、自变量次数不为1,故不是一次函数;B、自变量次数不为1,故不是一次函数,C、是一次函数;D、当k=0时不是函数.故选C.【点评】解题关键是掌握一次函数的定义条件:k、b为常数,k≠0,自变量次数为1.4.下列说法中,正确的个数是()(1)正比例函数一定是一次函数;(2)一次函数一定是正比例函数;(3)速度一定,路程s是时间t的一次函数;(4)圆的面积是圆的半径r的正比例函数.A.1个B.2个C.3个D.4个【分析】利用正比例函数和一次函数的定义逐一判断后即可得到答案.【解答】解:(1)正比例函数一定是一次函数,正确;(2)一次函数一定是正比例函数,错误;(3)速度一定,路程s是时间t的关系式为:s=vt,是一次函数,正确;(4)圆的面积是圆的半径r的平方的正比例函数,故错误,故选B...【点评】本题考查了一次函数和正比例函数的定义,属于基础题,比较容易掌握.5.下列函数中,是一次函数的个数为()A.3个B.1个C.4个D.2个【分析】根据一次函数的定义求解.【解答】解:由一次函数的定义知,(1)(2)是正比例函数,也是一次函数;(3)自变量次数为﹣1,不是一次函数;(4)是一次函数;(5)自变量最高次数为2,不是一次函数.故选A.【点评】解题关键是掌握一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1.注意正比例函数是特殊的一次函数.6.若函数y=(m﹣5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()A.m>﹣B.m>5C.m=﹣D.m=5【分析】根据正比例函数的定义可得:m﹣5≠0,4m+1=0,再解不等式和方程即可.【解答】解:∵函数y=(m﹣5)x+(4m+1)x2(m为常数)中的y与x成正比例,∴m﹣5≠0,4m+1=0,解得:m=﹣.故选:C.【点评】此题主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.7.若函数是正比例函数,则m的值是()..A.2B.﹣2C.±2D.1【分析】根据正比例函数的定义,令2m2﹣7=1,且m+2≠0求出即可.【解答】解:∵函数是正比例函数,∴2m2﹣7=1,且m+2≠0,∴m2﹣4=0,且m+2≠0,∴(m+2)(m﹣2)=0,且m+2≠0,∴m﹣2=0,解得:m=2.故选:A.【点评】本题主要考查了正比例函数的定义,关键是掌握①正比例系数≠0,②自变量次数=1.8.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()A.B.C.D.【分析】将原式转化为一次函数的形式,根据一次函数的性质即可作出判断.【解答】解:整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.【点评】主要考查了一次函数的图象性质,一次函数的图象是一条直线,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.9.由A(3,2),B(﹣1,﹣3)两点确定的直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】在平面直角坐标系中画出经过此两点的直线,即可判断出不经过的象限.【解答】解:如图所示:..,由图象可知不经过第二象限.【点评】考查了一次函数的图象,可用图象法表示的题用图象法比较简便.10.函数y=﹣mx(m>0)的图象是()A.B.C.D.【分析】根据m>0判断出﹣m的符号,再根据一次函数图象的特点解答即可.【解答】解:因为m>0,则﹣m<0,所以y随x的增大而减小,y=﹣mx的图象经过二、四象限.故选A.【点评】本题考查了正比例函数的图象的性质:k<0,正比例函数的图象过原点、第二、四象限;k>0,正比例函数的图象过原点、第一、三象限.11.直线与直线y2=kx+k在同一坐标系中的位置可能是图()A.B.C.D...【分析】根据题意,联立两直线的方程可得,,解可得,x=﹣2,即两直线的交点的横坐标为﹣2,且两直线的斜率同号,即倾斜方向一致,分析选项,可得答案.【解答】解:根据题意,联立两直线的方程可得,,解可得,x=﹣2,即两直线的交点的横坐标为﹣2,且两直线的斜率同号,即倾斜方向一致,分析选项,D符合;故选D.【点评】本题考查一次函数的解析式,要求学生会根据一次函数的解析式,分析判断函数的图象的性质.12.已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值围是()A.k>2B.k<2C.﹣1≤k≤2D.﹣1≤k<2【分析】若函数y=kx+