2019-2020年中考数学专题复习题型八规律与猜想含解析1.(xx四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为()A.B.C.D.【答案】C.考点:1.规律型:图形的变化类;2.综合题.2.(xx四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转xx次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.xxπB.2034πC.3024πD.3026π【答案】D.考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.3.(xx江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点Axx处,则点Axx与点A0间的距离是()A.4B.C.2D.0【答案】A.【解析】如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵xx÷6=336…1,∴按此规律运动到点Axx处,Axx与A1重合,∴OAxx=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.网4.(xx重庆市B卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116B.144C.145D.150【答案】B.5.(xx山东德州第12题)观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如题1);对剩下的三角形再分别重复以上做法,……,将这种做法继续下去(如图2,图3……),则图6中挖去三角形的个数为()A.121B.362C.364D.729【答案】C考点:探索规律6.(xx浙江宁波第12题)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中个小矩形的周长,就一定能算出这个大矩形的面积,则的最小值是()A.3B.4C.5D.6【答案】A.【解析】根据题意可知,最少知道3个小矩形的周长即可求得大矩形的面积.考点:矩形的性质.7.(xx贵州黔东南州第10题)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.xxB.2016C.191D.190【答案】D.8.(xx湖南长沙第11题)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里【答案】C考点:等比数列9.(xx浙江湖州第10题)在每个小正方形的边长为的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在的正方形网格图形中(如图1),从点经过一次跳马变换可以到达点,,,等处.现有的正方形网格图形(如图2),则从该正方形的顶点经过跳马变换到达与其相对的顶点,最少需要跳马变换的次数是()A.B.C.D.【答案】B【解析】根据图一可知,延AC或AD可进行下去,然后到CF,从而求出CF=3,这时可知跳过了3格,然后依次进行下去,而20×20格共21条线,所以可知要进行下去,正好是(20+1)÷7×2=14.故答案为:14.考点:1、勾股定理,2、规律探索10.(xx山东菏泽第14题)如图,轴,垂足为,将绕点逆时针旋转到的位置,使点的对应点落在直线上,再将绕点逆时针旋转到的位置,使点的对应点落在直线上,依次进行下去......若点的坐标是,则点的纵坐标为.【答案】【解析】∵直线∴∠AOB=60°∵在中,OB=1,OA=2,AB=∴,∵每旋转三次看做一个整体,∴.如图,过点向x轴画垂线,∵,,∴,即点的纵坐标为.11.(xx浙江湖州第15题)如图,已知,在射线上取点,以为圆心的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;;在射线上取点,以为圆心,为半径的圆与相切.若的半径为,则的半径长是.【答案】512(或29)考点:1、圆的切线,2、30°角的直角三角形12.(xx浙江舟山第15题)如图,把个长为1的正方形拼接成一排,求得71tan,31tan,1tan321CBACBACBA,计算,……,按此规律,写出(用含的代数式表示).【答案】,.考点:解直角三角形.13.(xx浙江衢州第16题)如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限。△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是__________;翻滚xx次后AB中点M经过的路径长为__________【答案】(5,);.14.(xx贵州黔东南州第16题)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点Bxx的坐标为.【答案】(0,﹣)15.(xx江苏徐州第18题)如图,已知,以为直角边作等腰直角三角形.再以为直角边作等腰直角三角形,如此下去,则线段的长度为.【答案】.