这是考研辅导班给的综合公式第一章P(A+B)=P(A)+P(B)-P(AB)特别地,当A、B互斥时,P(A+B)=P(A)+P(B)条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes公式:从结果找原因第二章二项分布(Bernoulli分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp(θ)分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义E(a)=a,其中a为常数E(a+bX)=a+bE(X),其中a、b为常数E(X+Y)=E(X)+E(Y),X、Y为任意随机变量随机变量g(X)的数学期望常用公式)()()|(BPABPBAP)|()()(BAPBPABP)|()(ABPAPnkkkBAPBPAP1)|()()(nkkkiikBAPBPBAPBPABP1)|()()|()()|(),...,1,0()1()(nkppCkXPknkkn,,...)1,0(!)(kekkXPk,1)(dxxf)(bXaPbadxxfbXaP)()()0(1)(/xexfxxkkXPxXPxF)()()(xdttfxXPxF)()()(xdttfxXPxF)()()(),(yxf),(yxF0),(yxf1),(dxdyyxf1),(0yxF},{),(yYxXPyxFdyyxfxfX),()(dxyxfyfY),()(}{}{},{jYPiXPjYiXP)()(),(yfxfyxfYXkkkPxXE)(dxxfxXE)()(kkkpxgXgE)())((ijijipxXE)()(1)(bxaabxf)()('xfxF方差定义式常用计算式常用公式当X、Y相互独立时:协方差与相关系数协方差的性质独立与相关独立必定不相关相关必定不独立不相关不一定独立第四章正态分布一般正态分布的概率计算一般正态分布的概率计算公式第五章t分布F分布正态总体条件下样本均值的分布:样本方差的分布:两个正态总体的方差之比第六章点估计:参数的估计值为一个常数矩估计最大似然估计似然函数均值的区间估计——大样本结果dxdyyxxfXE),()()()()(YEXEYXEijijjipyxXYE)(dxdyyxxyfXYE),()()()()(,YEXEXYEYX独立时与当dxxfXExXD)()()(222)()()(XEXEXD))}())(({(2)()()(YEYXEXEYDXDYXD)()()(YDXDYXD)()()(),(YEXEXYEYXCov)()(),(YDXDYXCovXY)()()()()(YEXEXYEYEYXEXE)()()(),(22XDXEXEXXCov),(),(YXabCovbYaXCov),(),(),(ZYCovZXCovZYXCov),(~2NX222)(21)(xexf2)(,)(XDXE)1,0(~),(~2NXZNX)()()(aaXPaXP)(1)()(aaXPaXP)()()(abbXaP),(~//),(~),(~21212212nnFnVnUnVnU则若),(~2nNX)1,0(~/NnX)1(~)1(222nSn)1(~/ntnsX)1,1(~//2122212221nnFSS);(1inixfL);(1inixpL则若),(~),1,0(~2nYNX)(~/ntnYX正态总体方差的区间估计两个正态总体均值差的置信区间大样本或正态小样本且方差已知两个正态总体方差比的置信区间第七章假设检验的步骤①根据具体问题提出原假设H0和备择假设H1②根据假设选择检验统计量,并计算检验统计值③看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。不可避免的两类错误第1类(弃真)错误:原假设为真,但拒绝了原假设第2类(取伪)错误:原假设为假,但接受了原假设单个正态总体的显著性检验单正态总体均值的检验大样本情形——Z检验正态总体小样本、方差已知——Z检验正态总体小样本、方差未知——t检验单正态总体方差的检验正态总体、均值未知——卡方检验单正态总体均值的显著性检验统计假设的形式双边检验左边检验右边检验单正态总体均值的Z检验拒绝域的代数表示双边检验左边检验右边检验比例——特殊的均值的Z检验单正态总体均值的t检验单正态总体方差的卡方检验nzx2/正态分布的分位点—大样本要求样本容量—代替准差通常未知,可用样本标标准差—样本均值—2/)50()(znnsxnppzp)1(2/正态分布的分位点—大样本要求样本容量—样本比例—2/)50(znnp已知准差小样本、正态总体、标nzx2/未知准差小样本、正态总体、标nsntx)1(2/分布的分位点的自由度为—tnnt1)1(2/22/1222/2)1()1(,SnSn卡方分布的分位点—样本方差—22/2S2221212/21nnzxx)1,1(/,)1,1(/212/2221212/2221nnFSSnnFSS0100::)1(HH0100::)2(HH0100::)3(HHnXZ/0代替)未知时用(大样本情形S2/ZZZZnppppZ/)1(000—样本比例——总体比例—pp0nSXt/02022)1(SnZZ