20150403116李海涛2016.5.221、热发电技术1.1太阳能热发电概念和分类1.2太阳能热发电类型1.3其它热发电技术2、供暖技术2.1采暖系统的构成2.2太阳能采暖分类2.3太阳能采暖应用实例3、制冷技术3.1制冷实现3.2太阳能制冷空调3.3太阳能制冷冰箱太阳能是可再生能源,它资源丰富、遍地都有,既可免费使用、又无需开采和运输,还是清洁而无任何污染的能源。太阳能由于可以转换成多种其他形式的能量,其应用的范围非常广泛,主要有太阳能发电、太阳能热利用、太阳能动力利用、太阳能光化利用、太阳能生物利用和太阳能光—光利用等。但是太阳能的能流密度较低,还具有间歇性和不稳定性,给开发利用带来不少的困难。3图1-1典型太阳能热发电站热力循环系统原理图4G太阳锅炉蓄热器锅炉汽轮发电机组凝汽器给水泵凝结水泵概念:太阳能热发电是利用集热器将太阳辐射能转换成热能并通过热力循环过程进行发电,是太阳能热利用的重要方面。分类:根据太阳能热动力发电系统中所采用的集热器的型式不同,该系统可以分为分散型和集中型两大类。1.1太阳能热发电概念和分类分散型发电系统是将抛物面聚光器配置成很多组,然后把这些集热器串联和并联起来,以满足所需的供热温度。集中型发电系统也称为塔式接受器系统,它由平面镜、跟踪机构、支架等组成定日镜阵列,这些定日镜始终对准太阳,把入射光反射到位于场地中心附近的高塔顶端的接受器上。图1-2抛物面槽式太阳能热发电系统原理图7图1-3塔式太阳能发电系统原理图1-定日镜;2-接收器;3-塔;4-热盐槽;5-冷盐槽6-蒸汽发生器;7-汽轮发电机组;8-凝汽器81.2.2塔式太阳能热发电也称盘式系统。主要特征是采用盘状抛物面聚光集热器,其结构从外形上看类似于大型抛物面雷达天线。由于盘状抛物面镜是一种点聚焦集热器,其聚光比可以高达数百到数千倍,因而可产生非常高的温度。1、抛物面盘式太阳能热发电系统2、平板式太阳能热发电系统3、太阳池热发电系统4、太阳能热气流发电系统5、太阳坑发电系统6、太阳烟囱发电系统10它是在地面挖一个球形大坑,坑壁贴上许多小反射镜,使大坑成一个巨大的凹面半球镜,它将太阳能聚焦到接受器,以获得高温蒸气。试验证实太阳坑发电的方案是可行的。它是在一大片圆形土地上盖满玻璃,圆中心建一高大的烟囱,烟囱底部装有风力透平机。透明玻璃盖板下被太阳加热的空气通过烟囱被抽走,驱动风力透平机发电。20世纪90年代,温室气体排放造成的全球变暖问题引起了国际社会的高度重视和广泛关注,利用可再生能源替代常规能源是改变目前能源结构最有效的途径。采暖在国内建筑用能中占据较大份额,北方地区采暖占家庭能耗的一半以上,同时利用原煤作为采暖能源是造成冬季大气污染的主要根源。因此,减少和替代采暖用煤最有效的途径是推广使用太阳能等可再生能源技术。热能提供部分,即太阳能集热器和辅助能源储能和换热设备热能利用部分,提供生活热水和采暖太阳能采暖可以分为主动式和被动式两大类。主动式是利用太阳能集热器和相应的蓄热装置作为热源来代替常规热水(或热风)采暖系统中的锅炉。被动式则是依靠建筑物结构本身充分利用太阳能来达到采暖的目的,因此它又称为被动式太阳房。这种太阳房构造简单,取材方便,造价便宜,无需维修,有自然的舒适感,特别适合发展中国家的广大农村。它利用集热器产生的热水采暖,结构简单,蓄热器置于室外,室内又是由地板供暖,故不占用室内居住面积,是这种系统的一大优点。1.拉萨火车站太阳能供暖系统实例:由中国建筑设计研究院承担主体设计,总建筑面积19504m2,2006年7月正式使用。室内以地板辐射采暖为主的方式,热源采用太阳能,集热器布置在建筑的屋面上,大部分集热器按照18度角度布置。按照典型设计日全天热平衡的思路,在白天,利用太阳能直接供热,同时将白天多余的集热量以热水形式蓄存,用于不同时刻(如夜间)的供暖需要。本工程采用部分负荷水蓄热方案。经计算:典型设计日白天供热量:14763kwh,蓄热量为:4560kwh,在考虑蓄热水温差为5℃和15%的蓄热损失的条件下,计算要求的蓄热水箱体积约为:1000m3。集热系统的水温要求是:供水温度:40℃,出水温度50℃。就太阳能热利用设备和技术本身而言,已经趋于成熟并在不断提高和改进。由于太阳能热利用设备和技术应用存在无日照甚至是阴冷天气时无法使用等弊端,不能满足建筑连续供热的需求,往往需要配备储热装置和辅助热源,增加了成本和系统的复杂程度,而且与建筑配合起来有一定的困难。现在有人提出太阳能与风力发电联合供热系统,在冬季,我国严寒地区、寒冷地区以及沿海地区的风力资源相当丰富。如果在这些地区的建筑屋顶和外墙以及附近设置一定数量的风力发电设备,就近直接连接电热设备,或与太阳能集热设备有机结合组成联合供热系统,满足建筑物供暖及热水供应的需求,不仅有利于建筑节能,而且有利于环境保护。太阳能属于低品位、低密度热源,太阳能制冷系统不同于蒸气压缩式制冷系统。从原理上看主要包括两种:一种是以热能为驱动能源,如吸收式、吸附式、喷射式制冷等;另外一种是以电能为驱动能源,先把太阳能转化成电能,然后再利用电能来制冷,如光电式制冷,热电制冷等。太阳能光热转换制冷,首先是将太阳能转换成热能,再利用热能作为外界补偿来实现制冷目的。光─热转换实现制冷主要从以下几个方向进行,即太阳能吸收式制冷、太阳能吸附式制冷、太阳能除湿制冷、太阳能蒸汽压缩式制冷和太阳能蒸汽喷射式制冷。其中太阳能吸收式制冷已经进入了应用阶段,而太阳能吸附式制冷还处在试验研究阶段。太阳能吸收式制冷的研究最接近于实用化,其最常规的配置是:采用集热器来收集太阳能,用来驱动单效、双效或双级吸收式制冷机,工质对主要采用溴化锂-水,当太阳能不足时可采用燃油或燃煤锅炉来进行辅助加热。系统主要构成与普通的吸收式制冷系统基本相同,唯一的区别就是在发生器处的热源是太阳能而不是通常的锅炉加热产生的高温蒸汽、热水或高温废气等热源。太阳能吸附式制冷系统的制冷原理是利用吸附床中的固体吸附剂对制冷剂的周期性吸附、解吸附过程实现制冷循环。太阳能吸附式制冷系统主要由太阳能吸附集热器、冷凝器、储液器、蒸发器、阀门等组成。常用的吸附剂对制冷剂工质对有活性炭-甲醇、活性炭-氨、氯化钙-氨、硅胶-水、金属氢化物-氢等。太阳能吸附式制冷具有系统结构简单、无运动部件、噪声小、无须考虑腐蚀等优点,而且它的造价和运行费用都比较低。利用太阳能作为动力源来驱动制冷或空调装置有着诱人的前景,因为夏季太阳辐射最强,也是最需要制冷的时候。这与太阳能采暖正好相反,越是冬季需要采暖的时候,太阳辐射反而最弱。佛罗里达大学的法伯教授就着手于这方面的研究,并投入了实际运行,他采用氨吸收式制冷机,冷却水为21℃的井水,据认为制冷系数有0.45左右。日本也报道了他们研制的太阳能供冷系统,该系统由面积32.2平方米的平板集热器,7kW的溴化锂制冷机和2.5立方米的储热水罐组成。数据表明,该系统可提供冬天供热所需的全部能量和夏天典型日内为驱动吸收式制冷机所需的能量的70%。沙特阿拉伯建设了平板集热器的太阳能空调,采用溴化锂制冷机进行制冷,并公开了其性能。天津大学1975年研制的连续式氨一水吸收式太阳能制冰机,日产冰量可达5.4kg。北京师范学院(现首都师范学院等)1977年研制成功1.5m2平板型间歇式太阳能制冰机,每天可制冰6.8-8kg;1979年又研制出8m2平板型自动跟踪连续式太阳能冷藏柜。华中工学院(现华中理工大学)研制了采光面积为1.5m2,冰箱容积为70升,以氨一水为工质对的小型太阳能制冷装置,可维持冰箱0℃10小时左右。上海交通大学制冷与低温工程研究所在太阳能制冷方面作了大量的工作,并且提出了一种太阳能供热与制冷联合循环的复合机装置。在节能冰箱技术方向上,中国家用电器协会姜风理事长曾提出零耗能冰箱概念,而吸附式太阳能冰箱便是可以实现零耗能目标的冰箱。这种冰箱的技术原理是利用自然能源即太阳能热来驱动,实现制冷的目的。