1/222019年广东省汕头市潮阳实验学校中考数学模拟试卷(3月份)一、选择题1.﹣3的倒数是()A.3B.﹣3C.﹣D.2.下列计算正确的是()A.2a+3b=5abB.(a﹣b)2=a2﹣b2C.a6÷a3=a2D.(ab)2=a2b23.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1074.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.某中学在举行“弘扬中华传统文化读书月”活动结束后,对八年级(1)班40位学生所阅读书籍数量情况的统计结果如表所示:阅读书籍数量(单位:本)1233以上人数(单位:人)121693这组数据的中位数和众数分别是()A.2,2B.1,2C.3,2D.2,16.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.67.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD8.若关于x的一元二次方程2x2﹣3x﹣m=0有两个实数根,则实数m的取值范围是()2/22A.m>﹣B.m≥C.m≤﹣D.m>9.如图,△ABC中,∠C=90°,AC=6,BC=8,现将△ABC沿着DE折叠,使点B与点A重合,则tan∠CAE的值是()A.B.C.D.10.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是;③△ADF与△EBF的面积比为3:2,④△ABF的面积为,其中一定成立的有()个.A.2B.3C.1D.4二、填空题11.因式分解:4m2﹣16=.12.函数中,自变量x的取值范围是.13.方程x2=3x的解为:.14.如图所示,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为4,则这个反比例函数的解析式为.15.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.3/2216.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC为直径的半圆O交AB于点D,点E是AB的中点,CE交半圆O于点F,则图中阴影部分的面积为cm2.三、解答题一17.计算:18.先化简,再求值:,其中x=+219.如图,在△ABC中,∠C=90°.(1)尺规作图:作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下,连接BD,当BC=5cm,AB=13cm时,求△BCD的周长.四、解答题(二)20.某校5月份举行了八年级生物实验考查,有A和B两个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率;(3)他们三人都参加实验A考查的概率是.21.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应4/22求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价150元销售,最后剩下50件按八折优惠卖出,求两批衬衫全部售完后利润是多少元?22.如图,在矩形ABCD中,点E是CD的中点,点F是边AD上一点,连结FE并延长交BC的延长线于点G,连接BF、BE.且BE⊥FG;(1)求证:BF=BG.(2)若tan∠BFG=,S△CGE=6,求AD的长.五、解答题23.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点.(1)求m的值及C点坐标;(2)在抛物线的对称轴上是否存在一点M,使得它到B、C两点的距离和最小,若存在,求出此时M点坐标,若不存在,请说明理由;(3)P为抛物线上一点,它关于直线BC的对称点为Q,当四边形PBQC为菱形时,请直接写出点P的坐标.24.如图1,在△ABC中,∠ABC=90°,AO是△ABC的角平分线,以O为圆心,OB为半径作圆交BC于点D,5/22(1)求证:直线AC是⊙O的切线;(2)在图2中,设AC与⊙O相切于点E,连结BE,如果AB=4,tan∠CBE=.①求BE的长;②求EC的长.25.已知:如图1,A(0,12),B(16,0),Rt△CDE中,∠CDE=90°,CD=6,DE=8,把它的斜边放在x轴上,点C与点B重合.如图2,FA⊥y轴,△CDE从图1的位置出发,以每秒1个单位的速度沿x轴向点O匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿直线AF向右匀速移动,点Q为直线CD与线段AB的交点,连结PQ,作PM⊥x轴于M,交AB于N,当点M与点E相遇时,△CDE和点P同时停止运动,设运动时间为t秒.(1)在整个运动过程中,当点D落在线段AB上时,求t的值;(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形,若存在,求出t的值;若不存在,说明理由;(3)在整个运动过程中,设△CDE与△BMN重叠部分的面积为S,请直接写出S与t的函数关系式(不用写自变量t的取值范围).2019年广东省汕头市潮阳实验学校中考数学模拟试卷(3月份)参考答案与试题解析一、选择题1.【分析】根据倒数的定义即可得出答案.【解答】解:﹣3的倒数是﹣.6/22故选:C.【点评】此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】A、原式不能合并,错误;B、原式利用完全平方公式展开得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、(a﹣b)2=a2﹣2ab+b2,错误;C、a6÷a3=a3,错误;D、(ab)2=a2b2,正确,故选:D.【点评】此题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解本题的关键.3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000823=8.23×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形.故本选项错误;故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【分析】根据众数和中位数的定义,结合表格和选项选出正确答案即可.【解答】解:一共40个数据,这组数据按照从小到大的顺序排列处在第20,21位的都是2,则7/22中位数为:2,2出现的次数最多,则众数为:2.故选:A.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.【分析】将a2+2a=3代入2a2+4a﹣3即可求出答案.【解答】解:当a2+2a=3时原式=2(a2+2a)﹣3=6﹣3=3故选:C.【点评】本题考查代数式求值,解题的关键是将原式进行适当的变形,本题属于基础题型.7.【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.8.【分析】根据判别式的意义得到△=(﹣3)2﹣4×2×(﹣m)≥0,然后解关于m的不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4×2×(﹣m)≥0,8/22解得m≥﹣故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.【分析】由折叠易得BE=AE,那么可用BE表示出CE长,那么就表示出了直角△ACE的三边,利用勾股定理即可求得BE长.【解答】解:由题意知AE=BE,设BE=x,则AE=x,CE=8﹣x,在Rt△ACE中,由AC2+CE2=AE2,得62+(8﹣x)2=x2.解得x=.∴BE的长为,∴CE=8﹣x=8﹣=,∴tan∠CAE===.故选:C.【点评】考查了翻折变换(折叠问题),本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②直角三角形的勾股定理.10.【分析】根据菱形的性质得:△ABF和△CBF全等的条件,进而判断①的正误;过E作AB的垂线段,再解直角三角形求出垂线段的长度,进而判断②的正误;利用相似三角形的性质,求出面积比,便可判断③的正误;利用解直角三角形和等边三角形的性质,求出△ABC中,AB边上的高,进而求得面积,判断④的正误.【解答】解:∵四边形ABCD是菱形,∴AB=BC=6,∵∠DAB=60°,∴AB=AD=DB,∠ABD=∠DBC=60°,在△ABF与△CBF中,9/22,∴△ABF≌△CBF(SAS),故①正确;如图:过点E作EG⊥AB,过点F作MH⊥CD,MH⊥AB,∵CE=2,BC=6,∠ABC=120°,∴BE=6﹣2=4,∵EG⊥AB,∴EG=2,故②正确;∵AD∥BE,∴△ADF∽△EBF,∴,故③错误;∵△ADF∽△EBF,∴,∵BD=6,∴BF=,∴FH=BF•sin∠FBH=,∴,故④正确;故选:B.【点评】本题是菱形的一个综合题,有一定的难度,主要考查了三角形全等的性质与判定,三角形相似的性质与判定,解直角三角形的应用,菱形的性质,等边三角形的性质与判定,学会作适当的辅助线,是解决难点问题的关键.二、填空题11.【分析】此题应先提公因式4,再利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a10/22﹣b).【解答】解:4m2﹣16,=4(m2﹣4),=4(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【分析】根据被开方数非负数列式计算即可得解.【解答】解:由题意得,3x﹣1≥0,解得x≥.故答案为:x≥.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.【分析】首先把方程移项,把方程的右边变成0,然后对方程左边分解因式,根据几个式子的积是0,则这几个因式中至少有一个是0,即可把方程转化成一元一次方程,从而求解.【解答】解:移项得:x2﹣3x=0,即x(x﹣3)