高级分子生物学期末考试题2012

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1高级分子生物学期末考试题2012-2013-11.请描述同源重组和位点特异性重组的异同点?(20分)(site-specificrecombination)位点特异性重组是遗传重组的一类。这类重组依赖于小范围同源序列的联会,重组也只发生在同源的短序列的范围之内,需要位点特异性的蛋白质分子参与催化,重组的蛋白不是rec系统而是int等,如噬菌体l的定点插入。重组时发生精确的切割、连接反应,DNA不失去、不合成。两个DNA分子并不进行对等的交换,有时是一个DNA分子整合到另一个DNA分子上,因此将这种形式的重组又称为插入重组。我们可以看到,同源重组一般都在染色体内仍按DNA序列的原来排列次序。但是在所谓位点特异性重组(site-specificrecombination)中,DNA节段的相对位置发生了移动,从而得到不同的结果─DNA序列发生重排。位点特异性重组不依赖于DNA顺序的同源性(虽然亦可有很短的同源序列),而依赖于能与某些酶相结合的DNA序列的存在。这些特异的酶能催化DNA链的断裂和重新连接,它们能发动位点特异性重组作用.而在同源重组中,DNA链的切断完全是随机的,结果暴露出一些能与RecA这样的蛋白质相结合的顺序,从而发动交叉重组。λ噬菌体DNA能通过重组作用整合进E.coli染色体的特异位点,成为前病毒(provirus,或称前噬菌体,prophage)。同源重组(HomologusRecombination)是指发生在姐妹染色单体(sisterchromatin)之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday结构(HolidayJunctureStructure)的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday结构的拆分。同源重组(HomologusRecombination)是指发生在姐妹染色单体(sisterchromatin)之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。2同源重组同源重组反应通常根据交叉分子或holliday结构(HolidayJunctureStructure)的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday结构的拆分。同源重组反应严格依赖DNA分子之间的同源性,100%重组的DNA分子之间的重组常见于非姐妹染色体之间的同源重组,称为HomologousRecombination,而小于100%同源性的DNA分子之间或分子之内的重组,则被称为HemologusRecombination。后者可被负责碱基错配对的蛋白如原核细胞内的MutS或真核生物细胞内的MSH2-3等蛋白质“编辑”。同源重组可以双向交换DNA分子,也可以单向转移DNA分子,后者又被称为基因转换(GeneConversion)。由于同源重组严格依赖分子之间的同源性,因此,原核生物的同源重组通常发生在DNA复制过程中,而真核生物的同源重组则常见于细胞周期的S期之后。2.请详细阐述真核前体mRNA的加工过程。(20分)1.剪接真核生物的基因是一种断裂基因,即其结构基因由若干编码序列和非编码序相间排列而成,其中为蛋白质编码的可转录序列称为外显子,不为蛋白质编码的可转录序列为内含子。转录合成的hnRNA需经过剪接、切掉内含子部分,然后再将外显子部分拼接起来。该过程有多种酶活性物质(包括snRNA)参与。32.5′末端加“帽”真核细胞成熟mRNA的5′末端均有一个特殊的结构,即m7Gpp-pmnNp,称为“帽”。帽的生成是在细胞核内进行的,但胞浆中也有酶体系,动物病毒mRNA加帽过程就是在宿主细胞的胞浆内进行的。3.3′末端加“尾”mRNA前体分子的3′末端有一段保守序列,由特异的核酸内切酶切去多余的核苷酸,然后在多聚A聚合酶的催化下,由ATP聚合生成多聚A尾。该反应在核内发生,在胞浆中也可继续进行。4.碱基修饰mRNA分子中有少量稀有碱基(如甲基化碱基)是在转录后经化学修饰(如甲基化)而形成的。5.选择性加工某些MRNA前体含有多个3‘剪切位点和多聚腺苷酸化位点,因此利用这些选择性位点可产生具有不同3'端非编码区或者具有不同编码能力的RNA产物。通过可变剪接途径可以挑先最保留在MRNA中的外显子,结果单个基因可以合成多种不同的蛋白质。6.RNA编辑在合成并经RNA编辑加工之后,MRNA分子的序列可以发生改变。个别核苷酸可以被置换,添加或者删除。编辑过的MRNA翻译产生了较短脱脂基蛋白B48,由于基缺少一个结合受体的蛋白结构域,因此功能受限。还有好多其他编辑的例子,阵锥虫线粒体MRNA发生RNA编辑,使得最终MRNA中一半以上的尿嘧啶都获自编辑过程。43.真核基因的表达是如何调控的?(20分)4.请比较siRNA和miRNA的异同点?(15分)miRNA与siRNA的相同点1.二者的长度都约在22nt左右。2.二者都依赖Dicer酶的加工,是Dicer的产物,所以具有Dicer产物的特点。3.二者生成都需要Argonaute家族蛋白存在。4.二者都是RISC组分,所以其功能界限变得不清晰,如二者在介导沉默机制上有重叠。5.miRNA和siRNA合成都是由双链的RNA或RNA前体形成的。miRNA与siRNA的不同点:1.根本区别是miRNA是内源的,是生物体的固有因素;而siRNA是人工体外合成的,通过转染进入人体内,是RNA干涉的中间产物。2.结构上,miRNA是单链RNA,而siRNA是双链RNA。3.Dicer酶对二者的加工过程不同,miRNA是不对称加工,miRNA仅是剪切pre-miRNA的一个侧臂,其他部分降解;而siRNA对称地来源于双链RNA的前体的两侧臂。4.在作用位置上,miRNA主要作用于靶标基因3′-UTR区,而siRNA可作用于mRNA的任何部位。5.在作用方式上,miRNA可抑制靶标基因的翻译,也可以导致靶标基因降解,即在转录水平后和翻译水平起作用,而siRNA只能导致靶标基因的降解,即为转录水平后调控。6.miRNA主要在发育过程中起作用,调节内源基因表达,而siRNA不参与生物生长,是RNAi的产物,原始作用是抑制转座子活性和病毒感染。5.siRNA产生的酶学机理是什么?(15分)6.siRNA是通过哪些分子途径关闭基因?(10分)RNA干涉(RNAi)在实验室中是一种强大的实验工具,利用具有同源性的双链RNA(dsRNA)诱导序列特异的目标基因的沉寂,迅速阻断基因活性。siRNA在RNA沉寂通道中起中心作用,是对特定信使RNA(mRNA)进行降解的指导要素。siRNA是RNAi途径中的中间产物,是RNAi发挥效应所必需的因子。siRNA的形成主要由Dicer和Rde-1调控完成。由于RNA病毒入侵、转座子转录、基因组中反向重复序列转录等原因,细胞中出现了dsRNA,Rde-1(RNAi缺陷基因-1)编码的蛋白质识别外源dsRNA,当dsRNA达到一定量的时候,Rde-1引导dsRNA与Rde-1编码的Dicer(Dicer是一种RNaseIII活性核酸内切酶,具有四个结构域:Argonaute家族的PAZ结构域,III型RNA酶活性区域,dsRNA结合区域以及DEAH/DEXHRNA解旋酶活性区)结合,形成酶-dsRNA复合体。Dicer切割后形成siRNA,然后,在ATP的参与下,细胞中存在的一种RNA诱导的沉默复合体RNA-inducedsilencing5complexRNAi干涉的关键步骤是组装RISC和合成介导特异性反应的siRNA蛋白。siRNA并入RISC中,然后与靶标基因编码区或UTR区完全配对,降解靶标基因,因此说siRNA只降解与其序列互补配对的mRNA。其调控的机制是通过互补配对而沉默相应靶位基因的表达,所以是一种典型的负调控机制。siRNA识别靶序列是有高度特异性的,因为降解首先在相对于siRNA来说的中央位置发生,所以这些中央的碱基位点就显得极为重要,一旦发生错配就会严重抑制RNAi的效应。要求:1、请完整答题;2、请自己完成,不得相互抄袭;3、每题先抄题目再答题,保持卷面整洁,字迹工整。

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功