目录上页下页返回结束Chapter1Functions1.3BasicElementaryFunctions1.1TheConceptionofFunctions1.2SomePropertiesofFunctions1.4CompositeFunctions1.5ElementaryFunctions目录上页下页返回结束1.1TheConceptionofFunctions目录上页下页返回结束目录上页下页返回结束则f,使得有唯一确定的与之对应,则称f为从X到Y的映射,记作.:YXfXYfIndependentVariableDomianDxxfy,)(DependentVariable设X,Y是两个非空实数集合,若存在一个对应规目录上页下页返回结束•Domian使表达式或实际问题有意义的自变量集合.对无实际背景的函数,书写时可以省略定义域.对实际问题,书写函数时必须写出定义域;•FunctionRepresentation:解析法、图像法、列表法目录上页下页返回结束EXAMPLE1.InverseSineFunctionDomianRangeAbsoluteValueFunctionDomianRangeOy211x2目录上页下页返回结束EXAMPLE2.Saywhetherthefollowingrepresentationsisafunction?21.25,[9,5).yxx22.25,[5,5).yxx23.1,.yxx目录上页下页返回结束•FunctionElementDomianandfEXAMPLE3.Saywhethertwofunctionsisequivalent?2111.,.11xyyxx22.,.yxyx3.,;,.yfxxDsfttD目录上页下页返回结束•Neighborhood(邻域))(aaa其中,a称为邻域中心,称为邻域半径.左邻域:右邻域:目录上页下页返回结束1.2SomePropertiesofFunctions目录上页下页返回结束Assumed(),.yfxxD1.Boundedness(有界性),Dx,0M使,)(Mxf则:1)()fx为D上的有界函数.在D上有界;2)()fx几何解释(Geometry)有上(下)界;充要条件(NecessaryandSufficientCondition)目录上页下页返回结束isbounded.[0,),xEXAMPLE1.Showthatthefunction2,[0,)1xyxx21xyx21xx2xx12MSolution.ForanywehaveIsMsingle?WhetheritiseasytoseekM?Othermethodstothesamepurpose?sinyx目录上页下页返回结束Unbounded0,M0,xDwhereas0.fxM目录上页下页返回结束2.Monotonicity(单调性)1212,,xxDxx12()(),fxfxthen)(xf12()(),fxfxincreaseonD;1x2xxyOFurtherdiscussion…IfIfthen)(xfdecreaseonD.12()(),fxfxthen)(xf12()(),fxfxisnon-decreasingonD;IfIfthen)(xfisnon-increasingonD.目录上页下页返回结束3.Pairity(奇偶性)EXAMPLE1.2ee)(xxxfyxchEvenxyOxexexychHyperbolicCosine目录上页下页返回结束xshxxychshxthOyx11xythxyOxexexysh2ee)(xxxfyxxxxeeeeHyperbolicSineOddHyperbolicTangentOdd目录上页下页返回结束Solution:),(),(llxxf,wehave2)()(2)()()(xfxfxfxfxfEvenfunctionOddfunctionEXAMPLE2.Givenanarbitraryfunctionf(x),trytoexpressitbytheadditionofanevenfunctionandanoddfunction.Forany目录上页下页返回结束4.Periodicity(周期性),0,lDxand,Dlx,thenwecall)(xfperiodicfunction,ifandlperiod.(UsuallyreferstoMinimumPositivePeriod).ππxOπ2πy2PeriodPeriod目录上页下页返回结束Note:周期函数不一定存在最小正周期.EXAMPLE.2.Dirichlet(狄利克雷函数)x为有理数x为无理数,1,0Cxf)(1.ConstantFunction目录上页下页返回结束5.Continuity(连续性)6.Derivability(可导性)7.Differentiability(可微性)8.Integrability(可积性)9.ConcavityandConvexity(凹凸性)目录上页下页返回结束1.3BasicElementaryFunctions目录上页下页返回结束1.ConstantFunctions(常量函数)2.PowerFunctions(幂函数)3.ExponentialFunctions(指数函数)4.LogarithmFunctions(对数函数)5.TrigonometricFunctions(三角函数)6.InverseTrigonometricFunctions(反三角函数)目录上页下页返回结束目录上页下页返回结束1.4CompositeFunctions目录上页下页返回结束fDuufy),(gfRD且则设有函数链称为由①,②确定的复合函数,①②u称为中间变量.注意:构成复合函数的条件gfRD不可少.目录上页下页返回结束EXAMPLE.3,yu2cosux,youwillobtain?If目录上页下页返回结束Giventhefollowingthreefunctions:0,uuyWeobtainacompositefunctionasfollow:Zk02cot,2ππ2πxkxk时),2,1,0(π,cotkkvvu),(,2xxv约定:为简单计,书写复合函数时不一定写出其定义域,默认对应的函数链顺次满足构成复合函数的条件.目录上页下页返回结束1.5ElementaryFunctions目录上页下页返回结束由常数及基本初等函数否则称为非初等函数.例如,,2xyy0,xx0,xx并可用一个式子表示的函数,经过有限次四则运算和复合步骤所构成,称为初等函数.可表为故为初等函数.又如,双曲函数与反双曲函数也是初等函数.目录上页下页返回结束非初等函数举例:符号函数当x0当x=0当x0xyO11取整函数当xyO412321目录上页下页返回结束ExercisesP2241P4224,28P8110,11,19,