2020届宁夏石嘴山市高三第二次模拟数学(理)试题(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-2020年高考(理科)数学二模试卷一、单选题(共12小题).1.已知集合A={x|0<x<3},B={x|log2x>1},则A∩B=()A.(2,3)B.(0,3)C.(1,2)D.(0,1)2.设复数z满足(1+i)z=3+i,则|z|=()A.B.2C.D.3.已知实数1,m,9成等比数列,则椭圆+y2=1的离心率为()A.2B.C.或2D.或4.在边长为2的菱形ABCD中,∠BAD=60°,E是BC的中点,则=()A.B.C.D.95.由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合右图,下列说法错误的是()A.5G的发展带动今后几年的总经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.信息服务商与运营商的经济产出的差距有逐步拉大的趋势D.设备制造商在各年的总经济产出中一直处于领先地位6.已知函数f(x)的图象如图所示,则f(x)可以为()-2-A.f(x)=B.f(x)=C.f(x)=D.f(x)=xe|x|7.《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为()A.B.C.D.8.下列说法正确的是()A.命题“∃x0≤0,2x0≤sinx0”的否定形式是“∀x>0,2x>sinx”B.若平面α,β,γ满足α⊥γ,β⊥γ,则α∥βC.随机变量ξ服从正态分布N(1,σ2)(σ>0),若P(0<ξ<1)=0.4,则P(ξ>0)=0.8D.设x是实数,“x<0”是“”的充分不必要条件9.将函数f(x)=2sin(2x+φ)(0<φ<π)的图象向左平移个单位后得到函数y=g(x)的图象,若函数y=g(x)为偶函数,则函数y=f(x)在的值域为()A.[﹣1,2]B.[﹣1,1]C.D.10.若双曲线的一条渐近线与函数f(x)=ln(x+1)的图象相切,则该双曲线离心率为()A.B.C.2D.11.如图,在四棱锥C﹣ABCD中,CO⊥平面ABOD,AB∥OD,OB⊥OD,且AB=2OD=12,AD=6,异面直线CD与AB所成角为30°,点O,B,C,D都在同一个球面上,则该球的半径为()A.3B.4C.D.12.已知函数f(x)=的图象上有且仅有四个不同的点关于直线y=﹣1的对称点在y=kx﹣1的图象上,则实数k的取值范围是()A.B.C.D.-3-二、填空题:本题共4小题,每小题5分,共20分.13.(2x2+)5展开式中�4系数为.14.在各项均为正数的等比数列{�n}中,�1=2,且�2,�4+2,�5成等差数列,记�n是数列{�n}的前n项和,则�6=15.已知直线L经过点P(﹣4,﹣3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线L的方程是.16.已知f(x)是奇函数并且是R上的单调函数,若函数y=f(x2+2)+f(﹣2x﹣m)只有一个零点,则函数g(x)=mx+(x>1)的最小值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:共60分.17.如图,在四棱柱ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,底面ABCD满足AD∥BC,且AB=AD=AA1=2,BD=DC=2.(Ⅰ)求证:AB⊥平面ADD1A1;(Ⅱ)求直线AB与平面B1CD1所成角的正弦值.18.在△ABC中,角A,B,C对边分别为�,�,�,若2����A=����B+����A.(1)求角A;(2)若2�=�+�,且△ABC的外接圆半径为1,求△ABC的面积.19.2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如图:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求X的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取m个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出m的最小值.(结论不要求证明)-4-20.已知F1,F2分别是椭圆E:的左,右焦点,点在椭圆E上,且抛物线y2=4x的焦点是椭圆E的一个焦点.(1)求a,b的值:(2)过点F2作不与x轴重合的直线l,设l与圆x2+y2=a2+b2相交于A,B两点,且与椭圆E相交于C,D两点,当时,求△F1CD的面积.21.已知f(x)=x2+aex﹣lnx.(1)设x=是f(x)的极值点,求实数a的值,并求f(x)的单调区间;(2)当a>0时,求证:f(x)>.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系x0y中,曲线C1的参数方程为(t为参数且t≠0,a∈[0,π)),曲线C2的参数方程为(θ为参数),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C3的极坐标方程为ρ=4cosθ.(1)求C2的普通方程及C3的直角坐标方程;(2)若曲线C1与曲线C2C3分别交于点A,B,求|AB|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+a|﹣|x﹣3|(a∈R).(1)若a=﹣1,求不等式f(x)+1>0的解集;(2)已知a>0,若f(x)+3a>2对于任意x∈R恒成立,求a的取值范围.-5-参考答案一、单选题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|0<x<3},B={x|log2x>1},则A∩B=()A.(2,3)B.(0,3)C.(1,2)D.(0,1)【分析】先分别求出集合A,B,由此能求出A∩B.解:集合A={x|0<x<3}=(0,3),B={x|log2x>1}=(2,+∞),则A∩B=(2,3),故选:A.2.设复数z满足(1+i)z=3+i,则|z|=()A.B.2C.D.【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.解:由(1+i)z=3+i,得z=,∴|z|=.故选:D.3.已知实数1,m,9成等比数列,则椭圆+y2=1的离心率为()A.2B.C.或2D.或【分析】先根据等比数列中项公式求出m的值,然后根据椭圆的几何性质即可求出离心率.解:∵实数1,m,9成等比数列,∴m2=9,即m=±3,∵m>0,∴m=3,椭圆的方程为,∴a=,b=1,c=∴离心率为,故选:B.4.在边长为2的菱形ABCD中,∠BAD=60°,E是BC的中点,则=()A.B.C.D.9【分析】根据题意画出图形,结合图形利用平面向量的线性表示和数量积运算法则,计算即可.解:如图所示,边长为2的菱形ABCD中,∠BAD=60°,∴•=2×2×cos60°=2;又E为BC中点,-6-∴=+=+,且=+,∴•=(+)•(+)=+•+=4+×2+×4=9.故选:D.5.由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合右图,下列说法错误的是()A.5G的发展带动今后几年的总经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.信息服务商与运营商的经济产出的差距有逐步拉大的趋势D.设备制造商在各年的总经济产出中一直处于领先地位【分析】本题结合图形即可得出结果.解:由图可知设备制造商在各年的总经济产出中在前期处于领先地位,而后期是信息服务商处于领先地位,故D项表达错误.故选:D.6.已知函数f(x)的图象如图所示,则f(x)可以为()-7-A.f(x)=B.f(x)=C.f(x)=D.f(x)=xe|x|【分析】由图象可知,函数的定义域为R,且为奇函数,当x→0时,f(x)→0,结合选项即可得出正确答案.解:由图象可知,函数的定义域为R,而选项B中函数的定义域为{x|x≠0},故可排除B;又函数图象关于原点对称,为奇函数,而选项C不具有奇偶性,故可排除C;又x→0时,f(x)→0,而选项D当x→+∞时,f(x)→+∞,故可排除D.故选:A.7.《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为()A.B.C.D.【分析】有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作216个,由正方体的结构及锯木块的方法,可知一面带有红漆的木块是每个面的中间那16块,共有6×16=96个,由此能求出从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率.解:有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作216个,由正方体的结构及锯木块的方法,可知一面带有红漆的木块是每个面的中间那16块,共有6×16=96个,∴从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率:p==.故选:C.8.下列说法正确的是()A.命题“∃x0≤0,2x0≤sinx0”的否定形式是“∀x>0,2x>sinx”B.若平面α,β,γ满足α⊥γ,β⊥γ,则α∥βC.随机变量ξ服从正态分布N(1,σ2)(σ>0),若P(0<ξ<1)=0.4,则P(ξ>0)=0.8-8-D.设x是实数,“x<0”是“”的充分不必要条件【分析】在A中,由特称命题的否定可知:命题“∃x0≤0,2x0≤sinx0”的否定形式是“∀x≤0,2x>sinx”;在B中,α与β相交或平行;在C中,P(ξ>0)=0.4+0.4+0.1=0.9;在D中,设x是实数,则“x<0”⇒“”,“”⇒“x<0或x>1”.解:在A中,由特称命题的否定可知:命题“∃x0≤0,2x0≤sinx0”的否定形式是“∀x≤0,2x>sinx”,故A错误;在B中,若平面α,β,γ满足α⊥γ,β⊥γ,则α与β相交或平行,如右图的正方体ABCD﹣A1B1C1D1中,平面ADD1A1⊥平面ABCD,平面BCC1B1⊥平面ABCD,平面ADD1A1∥平面BCC1B1;平面ABB1A1⊥平面ABCD,平面BCC1B1⊥平面ABCD,平面ABB1A1∩平面BCC1B1=BB1.故B错误;在C中,∵随机变量ξ服从正态分布N(1,σ2)(σ>0),∴正态曲线关于x=1对称,∵P(0<ξ<1)=0.4,∴P(1<ξ<2)=0.4,∴P(ξ>2)=0.5﹣0.4=0.1,∴P(ξ>0)=0.4+0.4+0.1=0.9,故C错误;在D中,设x是实数,则“x<0”⇒“”,“”⇒“x<0或x>1”,∴“x<0”是“”的充分不必要条件,故D正确.故选:D.9.将函数f(x)=2sin(2x+φ)(0<φ<π)的图象向左平移个单位后得到函数y=g(x)的图象,若函数y=g(x)为偶函数,则函数y=f(x)在的值域为()A.[﹣

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功