北师大版六年级下册《比例》教学反思【1】在教学比例尺的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离。而且在教学的过程中,方法也有不同,学生很容易混淆。第一个容易混淆的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于学生不知道如何区分,什么时候该怎么设。第二个就是方法的选择上,其实在这一块知识上,利用图上距离和实际距离的倍比关系,也是一种很好的解法。但是如何让学生理解这种方法的原理很重要,从学生的课堂和课后情况来看,很多学生其实并没有从根本上理解这种解法的原理,只是在一样的画葫芦罢了。根据学生的这一情况,今天又对比例尺的内容重新整理了一遍,其实关键还是在于学生没有真正的理解比例尺的概念。例如:比例尺1:500000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程进行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才能列出方程。这样就不用去顾及怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的。对于第二个问题,倍比关系的理解,实际还是对于比例尺的理解不够深。例如:比例尺1:500000表示的图上距离是实际距离的1/500000,实际距离是图上距离的500000倍,图上的1厘米实际是5千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便。在学生出现问题之后,针对学生的情况,及时地给学生适当的进行归纳整理,会加强学的理解,帮助学生更好的掌握!【2】《解比例》这节课实际上是一节比例基本性质的应用课。在解比例中,要先根据比例的基本性质把含有未知项的比例式改写成方程,再运用解方程的方法解比例。在把含有未知项的比例式改写成方程时,要注意外项(或内项)乘积等于内项(外项)乘积的运用,不能用错。所以,在学习《比例的意义和基本性质》一课时,一定要让学生熟练掌握比例的基本性质。现在回顾这节课,知识点教授总体来说比较顺利,不过也有几个地方是值得反思和注意的:反思之一:变换思维,随机应变调整非预设生成。开始出示的第一个复习就使我始料未及。题目是这样的:口算每组中两个比的比值,再判断两个比能否组成比例。2:8和9:27;1/4:1/8和1/8:1/16。我出这道题目的用意本来是想出两个能组成比例的题目,但是其中的2:8和9:27因为比值不相等,不能组成比例,当学生口算出比值,说出不能组成比例时,我一时慌了,真懊恼备课之前没有先算一下,后面内容的顺序要被打散了,怎么办?能否补救?也许是急了吧!急中生智,我马上反应过来:如果改动其中一个数,再看能不能组成比例?这个问题一出,学生的脑筋立马转动起来,答案也随之即出:“把27改成36,这样9:36的比值也是1/4,这样两个比就能组成比例了。”回答的多好,我在为学生高兴的同时,也在为自己的小机智暗自庆幸!(不过以后可不要再犯哦)后来在讲到课后练习题时有这样一道题目:下面哪些组中的四个数可以组成比例?把组成的比例写出来(1)6、4、18和12;(2)4、5、6和8;(3)4、3、1/3和1/4;(4)3/5、1/5、9和3。此道练习题与我的复习小岔曲虽然形式不同,但细细品味也有异曲同工之处,都是锻炼学生判断几个数能否组成比例。二:抓住重点,顺水推舟解决非预设生成。复习“根据比例的意义,在括号里填上合适的数。3:5=6:();()/15=2/5”时,要学生说一说是怎样想的?这题的要求是根据比例的意义来解答的,但是有一位学生没有运用比例的意义来回答我,她用的是比例的基本性质,用5×6算出两个内项的积再除以一个外项3等于另一个外项10,虽然她没有明确说用两个内项相乘的积等于两个外项相乘的积来解答,但她说出了其中的意思,这不就是本节新课的重点所在吗,现在被她提前说出来了,这说明该同学已经熟练的掌握了比例的基本性质,学生已经能运用比例的基本性质来求一个未知项了,这不正是我所希望他们掌握的么?顺水推舟,应该及时调整教案,直接进入今天的新授重点,不过我今天却没有这么做,这说明我对教材和教案的把握程度还不够,没有做到胸有成竹。总结今天这堂课,虽然按照我的思路上了下来,但是课堂中的闪光点没有及时的抓住。这堂课对于我来说太平淡,对于学生来说,首先对于那几位制造非预设生成的学生来说,没有及时鼓励、表扬,没有使其得到更充分的情感体验,对于全班同学来说,缺少了一个自我发挥,交流讨论的机会。在今后的教学中,我要把握好教材和教案,不能死搬教案,教案是“死”的,而人是“活”的!【3】成正比例的量是人教版六年级下册中的一个内容,是在学生学习了比例的意义和基本性质之后的一个内容,通过学习,使学生理解正比例的意义,会正确判断成正比例的量,并初步了解表示成正比例的量的图象特征,并能根据图象解决有关的简单问题。根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了表之后,发现路程和时间比的比值是一样的,都是90。这时,教师也举了一个例子,就是450÷9=50,从反面的例子,让学生理解相对应的路程和时间的比的比值都是90,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比着例1来自己理解数量和总价的正比例关系。最后,在两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。不足之处是在练习方面,学生找不到哪些数量成正比例时应让学生讨论,每个正比例关系都应让学生互相说一说,这样或许会懂得更多。【4】反思整节课,体现了学生自主探究,从生活情境出发,真正解放了学生,既关注了学生的学习过程,又使学生在交流评价过程中情感、态度、价值观等方面获得丰富的体验,较好的体现了事先的教学设想,感触较深。这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。比例是建立在比的关系的基础上的,所以必须让学生回顾明确什么是是比和比值。两个数相除叫做这两个数的比。所得的商叫做比值。比有两种写法,一种是比号写法,另一种是用分数写法。只有比值一样的两个比才能组成比例。从内容上看,“成正比例的量”这一内容,在整个小学阶段是一个较抽象的概念,他不仅要让学生理解其意义,还要学会判断两种是否是成正比例的量同时还要理解用字母公式来表示正比例关系,要渗透给学生一些函数的思想,为以后初中学习打下基础。根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生去从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了春游路程和时间表中之后,发现路程和时间比的比值是一样的,都是500米。让学生理解相对应的路程和时间的比的比值都是500米,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比例1来自己理解数量和总价的正比例关系。最后,在两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。然后,老师例子说明,并且请学生互动找例子。教师的教学过程是和学生共同探索、体验、发现的过程。我们必须从片面的以知识为中心、考试为中心、课堂为中心、书本为中心、教师为中心、转到以学生会学、爱学、善学、博学,以学生发展为中心。要树立人人平等的思想;要培养人人善问的习惯、要激发人人求新的欲望、要创设人人操作的场景、要给予人人成功的机会。当我们教师在课堂教学中把学生自主学习的权利真正交给学生后,我们会感觉到,我们对学生了解的还不够,他们对课堂所学知识的见解有些是我们望尘莫及的或始料不及的。我在设计“正比例关系式用字母表示”的环节中,我本意是打破教材,学生可以用任意字母表示,明确所用字母的含义即可,实际课堂中却出现了火花:当学生自己用任意字母写出正比例关系式后,师:谈谈你对y:x=k(一定)的理解?生1:我觉得x、y不能为0,x和y的位置可以换过来吗?;生2:我认为2a:b=k(一定)。这样,学习活动的主体是学生,最大限度的发展每一个学生的智慧潜能,我觉得开放型的教师不是“教教材”,而是“用教材教”,“教教材”是教书匠,“用教材教”才是创新型、科研型教师。开放型的数学教师不仅关注学生的智慧生命,还关注学生的情感价值生命。开放型的数学教师还应从“裁判员”的角色转变为“教学的组织者、引导者、参与者”。