二次函数y=a(x-h)2+k的图象及其性质温故而知新二次函数y=a(x-h)2的性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值开口大小抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x-h)2(a0)y=a(x-h)2(a0)(h,0)(h,0)直线x=h直线x=h在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=h时,最小值为0.当x=h时,最大值为0.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:越小,开口越大.越大,开口越小.aa2hxay例1.填空题(1)二次函数y=2(x+5)2的图像是,开口,对称轴是,当x=时,y有最值,是.(2)二次函数y=-3(x-4)2的图像是由抛物线y=-3x2向平移个单位得到的;开口,对称轴是,当x=时,y有最值,是.抛物线向上直线x=-5-5小0右4向下直线x=44大0(3)将二次函数y=2x2的图像向右平移3个单位后得到函数的图像,其对称轴是,顶点是,当x时,y随x的增大而增大;当x时,y随x的增大而减小.(4)将二次函数y=-3(x-2)2的图像向左平移3个单位后得到函数的图像,其顶点坐标是,对称轴是,当x=时,y有最大值,是0.y=2(x-3)2直线x=3(3,0)>3<3y=-3(x+1)2(-1,0)直线x=-1-1-11探讨二次函数y=2x²,y=2(x-1)²,y=2(x-1)²+1的图象的关系?返回1.2.3.-1-2-3.0.1.2.3.4.-1xy5y=2(x-1)2+1y=2(x-1)2y=2x21.2.3.-1-2-3.0.1.2.3.4.-1xy5y=2(x-1)2+1y=2x2+1y=2x2返回联系:将函数y=2x²的图象向右平移1个单位,就得到y=2(x-1)²的图象;在向上平移2个单位,得到函数y=2(x-1)²+1的图象.相同点:(1)图像都是抛物线,形状相同,开口方向相同.(2)都是轴对称图形.(3)顶点都是最低点.(4)在对称轴左侧,都随x的增大而减小,在对称轴右侧,都随x的增大而增大.(5)它们的增长速度相同.不同点:(1)对称轴不同.(2)顶点不同.(3)最小值不相同.y=a(x-h)²+k开口方向对称轴顶点最值增减情况a0向上x=h(h,k)x=h时,有最小值y=kxh时,y随x的增大而减小;xh时,y随x的增大而增大.a0向下x=h(h,k)x=h时,有最大值y=kxh时,y随x的增大而增大;xh时,y随x的增大而减小.|a|越大开口越小.返回练习1:指出下面函数的开口方向,对称轴,顶点坐标,最值。1)y=2(x+3)2+52)y=4(x-3)2+73)y=-3(x-1)2-24)y=-5(x+2)2-6练习2:对称轴是直线x=-2的抛物线是()Ay=-2x2-2By=2x2-2Cy=-1/2(x+2)2-2Dy=-5(x-2)2-6C1.抛物线的顶点为(3,5)此抛物线的解析式可设为()Ay=a(x+3)2+5By=a(x-3)2+5Cy=a(x-3)2-5Dy=a(x+3)2-52.抛物线c1的解析式为y=2(x-1)2+3抛物线c2与抛物线c1关于x轴对称,请直接写出抛物线c2的解析式_____你答对了吗?1.B2.y=-2(x-1)2-33.二次函数y=a(x-m)2+2m,无论m为何实数,图象的顶点必在()上A)直线y=-2x上B)x轴上C)y轴上D)直线y=2x上4.对于抛物线y=a(x-3)2+b其中a0,b为常数,点(,y1)点(,y2)点(8,y3)在该抛物线上,试比较y1,y2,y3的大小35你答对了吗?3.D4.y3y1y21)若抛物线y=-x2向左平移2个单位,再向下平移4个单位所得抛物线的解析式是________2)如何将抛物线y=2(x-1)2+3经过平移得到抛物线y=2x23)将抛物线y=2(x-1)2+3经过怎样的平移得到抛物线y=2(x+2)2-14).若抛物线y=2(x-1)2+3沿x轴方向平移后,经过(3,5),求平移后的抛物线的解析式_______小结•顶点y=a(x-h)²+k(h,k)•对称轴直线x=h•最值当a0时当a0时x=h时,y有最小值kx=h时,y有最大值k