2019聊城中考数学试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12019年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(2019·聊城)-的相反数是()A.-B.C.-D.【解答】解:-的相反数是,故选:D.【点评】本题考查了实数的性质,解决本题的关键是熟记实数的性质.2.(2019·聊城)如图所示的几何体的左视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从左向右看,得到的几何体的左视图是.故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(2019·聊城)如果分式的值为0,那么x的值为()A.-1B.1C.-1或1D.1或0【解答】解:根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选:B.2【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.(2019·聊城)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分【解答】解:98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13数,是96,所以数据的中位数为96分.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.(2019·聊城)下列计算正确的是()A.a6+a6=2a12B.2-2÷20×23=32C.(-ab2)•(-2a2b)3=a3b3D.a3•(-a)5•a12=-a20【解答】解:A、a6+a6=2a6,故此选项错误;B、2-2÷20×23=2,故此选项错误;C、(-ab2)•(-2a2b)3=(-ab2)•(-8a6b3)=4a7b5,故此选项错误;D、a3•(-a)5•a12=-a20,正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.6.(2019·聊城)下列各式不成立的是()A.-=B.=2C.=+=5D.=-3【解答】解:-=3-=,A选项成立,不符合题意;==2,B选项成立,不符合题意;==,C选项不成立,符合题意;==-,D选项成立,不符合题意;故选:C.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.7.(2019·聊城)若不等式组无解,则m的取值范围为()A.m≤2B.m<2C.m≥2D.m>2【解答】解:解不等式<-1,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2019·聊城)如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE.如果∠A=70°,那么∠DOE的度数为()A.35°B.38°C.40°D.42°【解答】解:连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,4∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选:C.【点评】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.9.(2019·聊城)若关于x的一元二次方程(k-2)x2-2kx+k=6有实数根,则k的取值范围为()A.k≥0B.k≥0且k≠2C.k≥D.k≥且k≠2【解答】解:(k-2)x2-2kx+k-6=0,∵关于x的一元二次方程(k-2)x2-2kx+k=6有实数根,∴,解得:k≥且k≠2.故选:D.【点评】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k的一元一次不等式组是解题的关键.10.(2019·聊城)某快递公司每天上午9:00-10:00为集中揽件和派件时段,甲仓库用来搅收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15B.9:20C.9:25D.9:30【解答】解:设甲仓库的快件数量y(件)与时间x(分)之间的函数关系式为:y1=k1x+40,根据题意得60k1+40=400,解得k1=6,5∴y1=6x+40;设乙仓库的快件数量y(件)与时间x(分)之间的函数关系式为:y2=k2x+240,根据题意得60k2+240=0,解得k2=-4,∴y2=-4x+240,联立,解得,∴此刻的时间为9:20.故选:B.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)解决该类问题应结合图形,理解图形中点的坐标代表的意义.11.(2019·聊城)如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A.AE+AF=ACB.∠BEO+∠OFC=180°C.OE+OF=BCD.S四边形AEOF=S△ABC【解答】解:连接AO,如图所示.∵△ABC为等腰直角三角形,点O为BC的中点,∴OA=OC,∠AOC=90°,∠BAO=∠ACO=45°.∵∠EOA+∠AOF=∠EOF=90°,∠AOF+∠FOC=∠AOC=90°,∴∠EOA=∠FOC.在△EOA和△FOC中,,∴△EOA≌△FOC(ASA),∴EA=FC,∴AE+AF=AF+FC=AC,选项A正确;∵∠B+∠BEO+∠EOB=∠FOC+∠C+∠OFC=180°,6∠B+∠C=90°,∠EOB+∠FOC=180°-∠EOF=90°,∴∠BEO+∠OFC=180°,选项B正确;∵△EOA≌△FOC,∴S△EOA=S△FOC,∴S四边形AEOF=S△EOA+S△AOF=S△FOC+S△AOF=S△AOC=S△ABC,选项D正确.故选:C.【点评】本题考查了全等三角形的判定与性质、旋转的性质、等腰直角三角形以及三角形内角和定理,逐一分析四个选项的正误是解题的关键.12.(2019·聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)【解答】解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,7解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.【点评】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.二、填空题(本题共5个小题,每小题3分,共15分。只要求填写最后结果)13.(2019·聊城)计算:(--)÷=-.【解答】解:原式=(-)×=-,故答案为:-.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序.14.(2019·聊城)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm),计算这个圆锥侧面展开图圆心角的度数为120°.【解答】解:∵圆锥的底面半径为1,∴圆锥的底面周长为2π,∵圆锥的高是2,∴圆锥的母线长为3,8设扇形的圆心角为n°,∴=2π,解得n=120.即圆锥的侧面展开图中扇形的圆心角为120°.故答案为:120°.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.15.(2019·聊城)在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A,B,C,D四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是.【解答】解:如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是=,故答案为:.【点评】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.(2019·聊城)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.9【解答】解:在Rt△ABC中,∠B=60°,∴∠A=30°,∴AB=2a,AC=a.∵DE是中位线,∴CE=a.在Rt△FEC中,利用勾股定理求出FE=a,∴∠FEC=30°.∴∠A=∠AEM=30°,∴EM=AM.△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB=.故答案为.【点评】本题主要考查了30°直角三角形的性质、勾股定理、中位线定义,解决此题关键是转化三角形中未知边到已知边长的线段上.17.(2019·聊城)数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,An.(n≥3,n是整数)处,那么线段AnA的长度为4-(n≥3,n是整数).【解答】解:由于OA=4,所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,10同理跳动n次后,离原点的长度为()n×4=,故线段AnA的长度为4-(n≥3,n是整数).故答案为:4-.【点评】考查了两点间的距离,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.三、解答题(本题共8个小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.(2019·聊城)(7分)计算:1-(+)÷.【解答】解:原式=1-•=1-=-=.【点评】本题考查的是分式的混合运算,掌握分式的混合运算法则、分式的通分、约分法则是解题的关键.19.(2019·聊城)(8分)学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查,并将抽查得到的数据分成5组,下面是未完成的频数、频率分布表和频数分布扇形图:组别课前预习时间t/min频数(人数)频率10≤t<102210≤t<20a0.10320≤t<30160.32430≤t<40bc5t≥403请根据图表中的信息,回答下列问题:11(1)本次调查的样本容量为,表中的a=,b=,c=;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级共有1000名学生,请估计这些学生中每天课前预习时间不少于20min的学生人数.【解答】解:(1)16÷0.32=50,a=50×0.1=5,b=50-2-5-16-3=24,c=24÷50=0.48;故答案为:50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数=360°×0.48=172.8°;(3)每天课前预习时间不少于20min的学生人数的频率=1--0.

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功