-1-目录摘要.......................................................................................-2-Abstract..................................................................................-3-第一章引言..........................................................................-4-1.1设计背景.......................................................................-4-1.2设计任务.......................................................................-4-第二章方案选择论证..........................................................-6-2.1方案分析........................................................................-6-2.2方案选择........................................................................-6-第三章电路设计................................................................-7-3.1主电路原理分析............................................................-7-第四章仿真分析................................................................-9-4.1建立仿真模型...............................................................-9-4.2仿真参数的设置..........................................................-10-4.3仿真结果及波形分析...................................................-11-第五章设计总结................................................................-26-致谢.................................................................................-27-参考文献...............................................................................-28--2-摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。此次课程设计要求设计晶闸管三相桥式可控整流电路,与三相半波整流电路相比,三相桥式整流电路的电源利用率更高,应用更为广泛。关键词:电力电子晶闸管simulink三相桥式整流电路-3-AbstractAtpresent,allkindsofpowerelectronicconverterinputrectifiercircuitinputpowerlevelgenerallyusetheuncontrolledrectifierorphasecontrolledrectifiercircuit.Thiskindofrectifiercircuitissimpleinstructure,controltechnologyismature,buttheACinputpowerfactorislow,andtheharmoniccurrentsinjectedalottothepowergrid.Accordingtoestimates,indevelopedcountries60%oftheelectricenergytransformedbeforeuse,andthisfigurereached95%atthebeginningofthecentury.Powerelectronictechnologyhasbeenwidelyusedinelectricpowersystem.Accordingtoestimates,thedevelopedcountriesintheenduserstouseelectricity,withmorethan60%oftheelectricityatleastaftermorethanonceinpowerelectronicconverterdevice.Powersysteminthemodernizationprocess,thepowerelectronictechnologyisoneofthekeytechnologies.Itisnoexaggerationtosaythat,ifyouleavethepowerelectronictechnology,powersystemmodernizationisunthinkable.Withthedevelopmentofsocialproductionandscientifictechnology,applicationofrectifiercircuitinthefieldofautomaticcontrolsystem,themeasuringsystemandthegeneratorexcitationsystemismoreandmorewidely.MatlabprovidesavisualsimulationtoolSimulinkcandirectlyestablishcircuitsimulationmodel,changingthesimulationparameters,andcanimmediatelygetthesimulationresultsofarbitrary,intuitive,furthersavestheprogrammingsteps.Inthispaper,Simulinkisusedtomodelthethree-phasefull-bridgecontrolledrectifiercircuit,thedifferentcontrolangle,bridgefaultconditionsaresimulatedandanalyzed,whichdeepensthethree-phasefull-bridgecontrolledrectifiercircuittheory,italsoexaminesthefoundationsformodernpowerelectronicexperimentalteachinglayagoodsolid.Thecurriculumdesignforthedesignofthyristorthree-phasebridgecontrolledrectifiercircuit,comparedwiththreephasehalfwaverectifiercircuit,thepowerofthree-phasebridgerectifiercircuitutilizationratehigher,moreextensiveapplication.Keywords:electronicpowerthyristorSimulinkthree-phasebridgerectifiercircuit-4-第一章引言1.1设计背景在电力、冶金、交通运输、矿业等行业,电力电子器件通常被用于电机变频调速、大功率设备驱动的关键流程之中,由于电力电子器件故障往往是致命性的、不可恢复的,常导致设备的损毁、生产的中断,造成重大经济损失。因此,通过储存故障信息用以检测对比尤为重要,并且也是一种简单可行的测量方法。根据电力电路的实际运行情况可知,大多数故障表现为功率开关器件的损坏,其中以功率开关器件的开路和直通最为常见,本文通过仿真采集功率器件在开路时的各种波形,分析整流器件发生故障的种类,判断可能发生故障的器件。1.2设计任务一、设计内容及技术要求:计算机仿真具有效率高、精度高、可靠性高和成本低等特点,已经广泛应用于电力电子电路(或系统)的分析和设计中。计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,提高分析和设计能力,避免因为解析法在近似处理中带来的较大误差,还可以与实物试制和调试相互补充,最大限度地降低设计成本,缩短系统研制周期。可以说,电路的计算机仿真技术大大加速了电路的设计和试验过程。通过本次仿真,学生可以初步认识电力电子计算机仿真的优势,并掌握电力电子计算机仿真的基本方法。晶闸管三相桥式可控整流电路的电路,参数要求:电网频率f=50hz电网额定电压U=380v电网电压波动正负10%阻感负载电压0——250V连续可调。1、设计内容(1)制定设计方案;(2)主电路设计及主电路元件选择;-5-(3)驱动电路和保护电路设计及参数计算;器件选择;(4)绘制电路原理图;(5)总体电路原理图及其说明。2、仿真任务要求(1)熟悉matlab/simulink/powersystem中的仿真模块用法及功能;(2)根据设计电路搭建仿真模型;(3)设置参数并进行仿真(4)给出不同触发角时对应电压电流的波形;3、设计的总体要求(1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务;(2)掌握基本电路的数据分析、处理;描绘波形并加以判断;(3)能正确设计电路,画出线路图,分析电路原理;(4)广泛收集相关技术资料。-6-第二章方案选择论证2.1方案分析单相可控电路与三相可控电路相比,有结构简单,输出脉动大,脉动频率低的特点,其不适于容量要求高的情况,而三相可控整流电路有与之基本相反的特点,对于相当于反电动势负载的电动机来说,它能满足其电流容量较大,电流脉动小且连续不断的要求。2.2方案选择课设题目中给出的正是要求为220V、20A的直流电动机供电,它的容量为S=kw,属于高容量,所以应选用三相可控整流电路整流。另外三相桥式整流电压的脉动频率比三相半波高一倍,因而所需平波电抗器的电感量也减小约一半。三相半波虽具有接线简单的特点,但由于其只采用三个晶闸管,所以晶闸管承受的反向峰值电压较高,并且电流是单方向的,存在直流磁化问题。基于以上原因,最终我选