不良导体导热系数的测量实验报告

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

热导系数的测量实验目的:了解热传导现象的物理过程,学习用稳态平板法测量不良导体的热传导系数并用作图法求冷却速率实验原理:1.导热系数当物体内存在温度梯度时,热量从高温流向低温,传热速率正比于温差和接触面积,定义比例系数为热导系数:dQdTdSdtdx2.不良导体导热系数的测量厚度为h、截面面积为S的样品盘夹在加热圆盘和黄铜盘之间。热量由上方加热盘传入。两面高低温度恒定为1T和2T时,传热速率为:ShTTdtdQ21热平衡时,样品的传热速率与相同温度下盘全表面自由放热的冷却速率相等。因此每隔30秒记录铜盘自由散热的温度,一直到其温度低于2T,可求出铜盘在2T附近的冷却速率dtdT。铜盘在稳态传热时,通过其下表面和侧面对外放热;而移去加热盘和橡胶板后是通过上下表面以及侧面放热。物体的散热速率应与它们的散热面积成正比:dtQdhRRhRRdtdQ222式中dtQd为盘自由散热速率。而对于温度均匀的物体,有dtdTmcdiQd联立得:dtdTmchRRhRRdtdQ222结合导热系数定义即可得出样品的导热系数表达式。实验内容:1.用卡尺测量A、B盘的厚度及直径(各测三次,计算平均值及误差)。2.按图连接好仪器。3.接通调压器电源,等待上盘温度缓慢升至1T=3.2~3.4mV4.将电压调到125V左右加热,来回切换观察1T和2T值,若十分钟基本不变(变化小于0.03)则认为达到稳态,记录下1T和2T的值5.移走样品盘,直接加热A盘,使之比2T高10℃(约0.4mV);调节变压器至零,再断电,移走加热灯和传热筒,使A盘自然冷却,每隔30s记录其温度,选择最接近2T的前后各6个数据,填入自拟表格数据处理:样品盘质量898.5mg上盘稳定温度13.17TmV下盘稳定温度22.56TmV样品盘比热容10.3709()ckJkgK实验前室温=21.8CT室实验后室温=22.6CT室几何尺寸均使用游标卡尺测量:测量次数123平均值标准差下盘厚度/Ahcm0.7680.7660.77020.7680.002下盘直径/ADcm12.95212.95612.95412.9540.002样品厚度/Bhcm0.7540.7560.7600.7570.003样品直径/BDcm13.00212.99012.99412.9950.006自由散热降温时下盘温度:相对编号123456789101112下盘温度2/TmV2.822.782.722.682.642.602.552.512.482.442.402.36下面先处理几何数据:取0.95P,3n则0.954.30t1.96pka)对下盘厚度Ah:0.768Ahcm/0.002/30.001AAhuncm游标卡尺测量:3C0.002cm仪由于下盘估因较小而忽略22+=0.002cmB仪估仪22220.950.95()(/)(4.300.001)(1.960.002/3)0.006APBUtukCcm最后:(0.7680.006)Ahcm0.95Pb)对下盘直径AD:12.954ADcm/0.002/30.001AADuncm游标卡尺测量:3C0.002cm仪考虑直径判断误差,取0.01cm估2222+=0.0020.010.01cmB仪估22220.950.95()(/)(4.300.001)(1.960.01/3)0.012APBUtukCcm最后:(12.9540.012)ADcm0.95Pc)对样品盘厚度Bh:0.757Bhcm/0.003/30.002BAhuncm游标卡尺测量:3C0.002cm仪由于样品质地较软,取0.01cm估2222+=0.0020.010.01cmB仪估22220.950.95()(/)(4.300.002)(1.960.01/3)0.014APBUtukCcm最后:(0.7570.014)Ahcm0.95Pd)对下盘直径BD:12.995BDcm/0.006/30.003BADuncm游标卡尺测量:3C0.002cm仪考虑直径判断误差,且样品较软,取0.02cm估2222+=0.0020.020.02cmB仪估22220.950.95()(/)(4.300.003)(1.960.02/3)0.026APBUtukCcm最后:(12.9950.026)BDcm0.95Pe)对上盘稳定温度1T:由于只测量了一次,因此只计算B类不确定度电压表测量:3C0.005mV仪对数字万用表估忽略22+=0.005BmV仪估仪0.95/1.960.005/30.003PBUkCmV最后:1(3.170.00)TmV0.95Pf)对下盘稳定温度2T:由于只测量了一次,因此只计算B类不确定度电压表测量:3C0.005mV仪对数字万用表估忽略22+=0.005BmV仪估仪0.95/1.960.005/30.003PBUkCmV最后:1(2.560.00)TmV0.95P1.逐差法将12个数据前后分成2组,然后对应相减:(对应组数据时间差630180tss)第一组编号123456温度2/TmV2.822.782.722.682.642.60第二组编号789101112温度2/TmV2.552.512.482.442.402.36降温2/TTmV0.270.270.240.240.240.240.25TmV0.02TmV/0.02/60.008ATunmV电压表测量:3C0.005mV仪对数字万用表估忽略22+=0.005BmV仪估仪等效测量次数6n,取0.95P,则0.952.57t1.96pk22220.950.95()(/)(2.570.008)(1.960.005/3)0.02APBUtukCmV最后:(0.250.02)TmV0.95P得出逐差法降温速度:30.251.38910/180dTTmVsdtt根据公式:21224()2BAABAAmchDhdTdtDTTDh代入数据:323322320.8985(0.370910)(0.75710)12.95440.768101.389103.14(12.99510)(3.172.56)12.95420.76810得到:110.240WmK由不确定度传递公式:122lnlnlnln42lnln2lnln()BAABAAmchDhDDhVVVt求微分:121242()242AAAABBBAABAAdDhdDhdhdDdVVddVhDhDDhVVV合并同类项:1212122()(42)4242BBAAAABBAAAAAAAAdhdDdDdDdhdhdVdVddVhDDhDhDhDhVVVVV转化成不确定度:12222222221212222()()()[][]()()()(4)(2)(4)(2)BBAAhDADAhVVTBBAAAAAAAAUUhUDUUUUUhDDhDhDhDhTVVVV即:1222222221212222()()[][]()()()(4)(2)(4)(2)BBAAhDADAhVVTBBAAAAAAAAUUhUDUUUUUhDDhDhDhDhTVVVV代入数据:222220.01420.02620.7680.012212.9540.0060.040.240()()[][]()000.75712.995(12.95440.768)(12.95420.768)(12.95440.768)(12.95420.768)0.25U得:110.039UWmK0.95P最后:11(0.2400.039)WmK0.95P2.作图法先在22.56TmV前后取点,再作一直线,使所取个点尽量均匀的分布在直线两边。最后在直线上取两较远非原始数据点计算斜率:32.752.371.40710/285.815.7dTKmVsdt根据公式:21224()2BAABAAmchDhdTdtDTTDh代入数据:323322320.8985(0.370910)(0.75710)12.95440.768101.407103.14(12.99510)(3.172.56)12.95420.76810得到:110.243WmK3.线性回归法LinearRegression:Y=A+B*XParameterValueError---------------------------------------------------A2.7650.00416B-0.001372.34509E-5---------------------------------------------------RSDNP----------------------------------------------------0.998680.00738110.0001---------------------------------------------------利用计算机自动拟合的数据,有:3(1.370.02)10/dTKmVsdt0.68P电压表测量:3C由于300ts,取10.005/300mVs仪对数字万用表估忽略2231+=0.0210BmVs仪估仪将拟合数据的置信概率伸展为0.95,加入B类不确定度并合成:取0.95P则1.96pk223232310.95(2)(/)(20.0210)(1.960.0210/3)0.0410APBUukCmVs最后:31(1.370.04)10dTmVsdt0.95P下面计算热导系数,根据公式:21224()2BAABAAmchDhdTdtDTTDh代入数据:323322320.8985(0.370910)(0.75710)12.95440.768101.37103.14(12.99510)(3.172.56)12.95420.76810得到:110.236WmK再利用逐差法中所推导的不确定度公式计算热导系数的不确定度:1222222221212222()()[][]()()()(4)(2)(4)(2)BBAAhDADAhVVTBBAAAAAAAAUUhUDUUUUUhDDhDhDhDhTVVVV代入数据:222220.01420.02620.7680.012212.9540.0060.040.236()()[][]()000.75712.995(12.95440.768)(12.95420.768)(12.95440.768)(12.95420.768)1.37U得:110.008UWmK0.95P最后:11(0.2400.008)WmK0.95P误差分析:1.测量圆盘直径时由于样品盘较软,测量时会有一定形变,可能测得的直径会

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功