高斯求和一、知识要点被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1二、精讲精练【例题1】你有好办法算一算吗?1+2+3+4+5+6+7+8+9+10=()练习1:速算。(1)1+2+3+4+5+……+20(2)1+2+3+4+……+99+100(3)21+22+23+24+……+100【例题2】计算。(1)21+23+25+27+29+31(2)312+315+318+321+324练习2:计算。(1)48+50+52+54+56+58+60+62(2)108+128+148+168+188【例题3】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一根,这堆木材共有多少根?练习3:(1)体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?(2)有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?(3)有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分钟指向6敲1下,这个钟一昼夜敲多少下?【例题4】计算992+993+994+995+996+997+998+999。练习4:计算。(1)95+96+97+98+99(2)2006+2007+2008+2009(3)9997+9998+9999(4)100-1-3-5-7-9-11-13-15-17-19【例题5】计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81练习5:计算。(1)1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1(2)1000-81-11-82-12-83-13-84-14-85-15-86-16-87-17-88-18-89-19(3)2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16植树问题一、知识要点爸爸给晶晶出了一道题:“小朋友们在路的一边植树,先植一棵树,以后每隔3米植一棵,已经植了9棵,问第一棵和第九棵树相距多少米?”晶晶一看,随口答题:“27米。”同学们,晶晶答对了吗?这一类应用题我们通常称为“植树问题”。解答这类问题的关键是要弄清总距离、间隔长和棵数三者之间的关系。解答植树问题先要考虑植树的方式,一般在不封闭的线路上植树,棵数=总距离÷间隔长+1;在封闭的线路上植树,棵数=总距离÷间隔长。另外,生活中还有一些问题,可以用植树问题的方法来解答。比如锯木头、爬楼梯问题等等,这时解题的关键是要将题目中的条件和问题与植树问题中的“总距离”、“间隔长”、“棵数”对应起来。二、精讲精练【例题1】小朋友们在路的一边植树,先植一棵树,以后每隔3米植一棵,已经植了9棵,问第一棵和第九棵树相距多少米?【思路导航】要得出正确的结果,我们可以画出如下的示意图:根据“已经植了9棵”,从图中可以看出,第一棵树和第九棵树之间的间隔是9-1=8(个),每个间隔是3米,所以第一棵和第九棵相距3×8=24(米),具体列式如下:3×(9-1)=3×8=24(米)答:第一棵和第九棵树相距24米。练习1:(1)在路的一侧插彩旗,每隔5米插一面,从起点到终点共插了20面,这条道路有多长?(2)在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了20盆,这条走廊长多少米?【例题2】在一条长42米的大路两侧栽树,从起点到终点一共栽了14棵,已知相邻两棵树之间的距离都相等,问相邻两棵树之间的距离是多少米?【思路导航】根据“在路的两侧共栽了14棵树”这个条件,我们可以先求出每一侧栽了14÷2=7(棵)树,那么从第1棵树到第7棵树之间的间隔是7-1=6(个)。42米长的大路平均分成6段,每段是42÷6=7(米)。列式如下:42÷(14÷2-1)=42÷(7-1)=42÷6=7(米)答:相邻两棵树之间的距离是7米。练习2:在公园一条长30米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子的距离相等,相邻两把椅子之间相距多少米?【例题3】把一根钢管锯成小段,一共花了28分钟,已知每锯开一段需要4分钟,这根钢管被锯成了多少段?【思路导航】我们先求出钢管被锯开了28÷4=7(处),因而被锯开的段数有7+1=8(段)。列式如下:28÷4+1=7+1=8(段)答:这根钢管被锯成了8段。练习3:一根圆木锯成2米长的小段,一共花了12分钟。已知每锯下一段要3分钟,这根圆木长多少米?【例题4】甲、乙两人比赛爬楼梯,甲跑到4楼时,乙恰好跑到3楼,照这样计算,甲跑到16楼时,乙跑到了多少楼?【思路导航】解答爬楼梯问题时,不能以楼层进行计算,而要用楼梯段数进行计算,因为第一层楼是不用爬的,“楼层数-1”才是要走的“楼梯段数”,根据题意“甲跑到4楼时,乙恰好跑到3楼”,实际上是说“甲跑3段楼梯与乙跑2段楼梯所用的时间相同。”照这样计算,甲跑到16楼,也就是跑了15段楼梯,应是甲跑3段楼梯所用的时间的5倍,在同一时间里,乙跑的楼梯段数也是他跑2段楼梯的5倍,也就是这时乙跑了10段楼梯,即他跑到了第10+1=11(楼)。列式如下:(3-1)×[(16-1)÷(4-1)]+1=2×5+1=11(楼)答:甲跑到16楼时,乙跑到了11楼。练习4:小明和小红两人爬楼梯比赛,小明跑到第4层时,小红跑到第5层,照这样计算,当小明跑到第16层时,小红跑到了第几层?【例题5】一个圆形跑道长300米,沿跑道周围每隔6米插一面红旗,每两面红旗中间插一面黄旗,跑道周围各插了多少面红旗和黄旗?【思路导航】在圆周上插旗,插的面数正好等于分成的段数,所以插了红旗300÷6=50(面),由于每两面红旗中间插一面黄旗,所以黄旗的面数就等于红旗的面数,也是50面。300÷6=50(面)答:跑道周围插了50面红旗和50面黄旗。练习5:(1)有一个正方形水池,周长是200米。如果沿着水池周围每隔10米装一盏红灯,再在相邻的两盏红灯中间等距离地装4盏黄灯。问水池周围一共装了几盏红灯?几盏黄灯?(2)一条公路长480米,在两旁植树,两端都植。每隔12米植一棵樟树,两棵樟树中间又等距离地栽了3棵柳树。问樟树和柳树各栽了多少棵?简单推理一、知识要点数学课上,老师布置了一道题:□+△=28□=△+△+△□=()△=()要得出正确的结论,就要进行分析、推理。学会了推理,能使你变得更聪明,头脑更灵活。数学上有许多重大的发现和疑难问题的解决都离不开推理。解答这类推理题时,要求小朋友仔细观察,认真分析等式中几个图形之间的关系,寻找解题的突破口,然后再利用等量代换、消去等方法来进行解答。二、精讲精练【例题1】下式中,□和△各代表几?□+△=28□=△+△+△□=()△=()【思路导航】根据□+△=28,我们可以得出□=28-△;由□=△+△+△得到28=△+△+△+△,4个△等于28,一个△等于28÷4=7;由□=△+△+△可求出□=7+7+7=21。练习1:1.☆+○=18☆=○+○☆=()○=()2.△+○=25△=○+○+○+○△=()○=()3.○+□=36○=□+□+□+□+□○=()□=()【例题2】下式中,□和△各代表几?□×△=36□÷△=4□=()△=()【思路导航】根据□÷△=4可知△为一份,□是这样的4份,即□=4△;又根据□×△=36,可以得到4△×△=36,即△×△=9,进一步得到△=3,□=4△=4×3=12。练习2:1.○和□各表示几?○×□=16□÷○=4○=()□=()2.想想,填填。○×△=20○=△+△+△+△+△○=()△=()3.□和○各代表几?□=○+○+○+○○×□=16□=()○=()【例题3】下式中,□和△各代表几?□+□+△=16□+△+△=14□=()△=()【思路导航】16里面有2个□,1个△;14里面有1个□,2个△,16减去14等于2,即□-△=2,那么如果把△换成了□,则16需要加上2,即□+□+□=16+2,那么□=(16+2)÷3=6,△=16-6×2=4。练习3:1.□+□+○+○=38□+□+○=22□=()○=()2.□+□+□+△+△=52□+□+△+△+△=48□=()△=()3.○+△+□+□=10△+□+△+□=12△+○+□+○=12○=()□=()△=()【例题4】下式中,□和○各代表几?□+□+○+○+○=34○+○+○+○+□+□+□=48□=()○=()【思路导航】34里面有2个□、3个○,48里面有3个□、4个○,用48减去34得到□+○=14,34中有2个(□+○)及1个○。所以,○=34-14×2=6,□=(34-6×3)÷2=8。练习4:1.☆+☆+△+△+△=24△+△+△+△+☆+☆+☆=36☆=()△=()2.○+○+○+△+△=54△+△+△+○+○+○+○=76○=()△=()3.□+□+□+△+△+△+△=96△+△+△+△+△+□+□+□+□=123□=()△=()【例题5】下式中,□、☆和△各代表几?☆+☆=□+□+□□+□+□=△+△+△+△☆+□+△+△=80☆=()□=()△=()【思路导航】因为2个☆等于3个□,3个□又等于4个△,所以2个☆等于4个△,那么1个☆等于2个△。在☆+□+△+△=80中,2个△可以用1个☆替代,就变为☆+□+☆=80,而2个☆又可以用3个□替代,也就是□+□+□+□=80,所以□=20,☆=20×3÷2=30,△=20×3÷4=15。练习5:1.△+△=○+○+○○+○+○=□+□+□○+□+△+△=100○=()□=()△=()2.○+○=□+□+□□+□+□=△+△△+□+○=40△=()□=()○=()3.□+□=○+○+○○+○+○=☆+☆+☆+☆+☆+☆+☆+☆□+○+☆+☆+☆+☆=320○=()□=()☆=()