演示文稿1FRET机理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.荧光的产生物质分子的能级包括一系列电子能级、振动能级和转动能级。一、基本原理图1荧光、磷光能级图分子吸收能量后,从基态最低振动能级跃迁到第一电子激发态或更高电子激发态的不同振动能级(这一过程速度很快,大约10-15s),成为激发单重态分子。激发态分子不稳定,可以通过以下几种途径释放能量返回基态。1)振动驰豫这一过程只能发生在同一电子能级内,即分子通过碰撞以热的形式损失部分能量,从较高振动能级下降到该电子能级的最低振动能级上。由于这一部分能量以热的形式释放,而不是以光辐射形式发出,故振动驰豫属于无辐射跃迁。2)内转换即激发态分子将多余的能量转变为热能,从较高电子能级降至较低的电子能级。内转换也属于无辐射跃迁。3)荧光较高激发态分子经无辐射跃迁降至第一电子激发单重态的最低振动能级后,仍不稳定,停留较短时间后(约10-8s,称作荧光寿命),以光辐射形式放出能量,回到基态各振动能级,这时所发射的光称为荧光。当然也可以无辐射跃迁形式返回基态。4)系间窜跃有些物质的激发态分子通过振动驰豫和内转换下降到第一电子激发态的最低振动能级后,有可能经过另一个无辐射跃迁转移至激发三重态,这一过程伴随着自旋方向的改变,称为系间窜跃。对于大多数物质,系间窜跃是禁阻的。如果分子中有重原子(如I、Br等)存在,由于自旋-轨道的强偶合作用,电子自旋方向可以改变,系间窜跃就变得容易了。5)磷光经系间窜跃的分子再通过振动驰豫降至激发三重态的最低振动能级,停留一段时间(10-4~10s,称作磷光寿命),然后以光辐射形式放出能量返回到基态各振动能级,这时发出的光称为磷光(phosphorescence)。由于激发三重态能量比激发单重态最低振动能级能量低,故磷光辐射的能量比荧光更小,即磷光的波长比荧光更长。1)荧光的检测光源发出的紫外可见光通过激发单色器分出不同波长的激发光,照射到样品溶液上,激发样品产生荧光。样品发出的荧光为宽带光谱,需通过发射单色器分光后再进入检测器,检测不同发射波长下的荧光强度F。由于激发光不可能完全被吸收,可透过溶液,为了防止透射光对荧光测定的干扰,常在与激发光垂直的方向检测荧光(因荧光是向各个方向发射的)。2.激发光谱和荧光光谱任何荧光物质,都具有两种特征光谱,即激发光谱(excitationspectrum)和荧光发射光谱(fluorescenceemissionspectrum)。2)激发光谱和荧光发射光谱的形成2.1激发光谱保持荧光发射波长不变(即固定发射单色器),依次改变激发光波长(即调节激发单色器),测定不同波长的激发光激发下得到的荧光强度F(即激发光波长扫描)。然后以激发光波长为横坐标,以荧光强度F为纵坐标作图,就可得到该荧光物质的激发光谱。任何荧光物质,都具有两种特征光谱,即激发光谱(excitationspectrum)和荧光发射光谱(fluorescenceemissionspectrum)。2)激发光谱和荧光发射光谱的形成激发光谱上荧光强度最大值所对应的波长就是最大激发波长,是激发荧光最灵敏的波长。物质的激发光谱与它的吸收光谱相似,所不同的是纵坐标。2.2荧光光谱荧光光谱,又称发射光谱。保持激发光波长不变(即固定激发单色器),依次改变荧光发射波长,测定样品在不同波长处发射的荧光强度F。以发射波长为横坐标,以荧光强度F为纵坐标作图,得到荧光发射光谱。荧光发射光谱上荧光强度最大值所对应的波长就是最大发射波长。图2蒽在乙醇溶液中的激发光谱(-----)和发射光谱3)发射光谱与激发光谱的关系3.1发射光谱形状与激发光波长无关由于荧光是分子从第一电子激发态的最低振动能级返回到基态的各振动能级时释放的光辐射,与分子被激发至哪一个电子激发态无关。3.2发射光谱比激发光谱波长为长由于分子吸收激发光被激发至较高激发态后,先经无辐射跃迁(振动驰豫、内转换)损失掉一部分能量,到达第一电子激发态的最低振动能级,再由此发出荧光。因此,荧光发射能量比激发光能量低,发射光谱波长比激发光波长长。3.3镜像对称对于高度对称的有机分子,其荧光发射光谱与吸收光谱呈镜像对称关系。解释1:能级结构相似性荧光为第一电子激发单重态的最低振动能级跃迁到基态的各个振动能级而形成,即其形状与基态振动能级分布有关。激发光谱是由基态最低振动能级跃迁到第一电子激发单重态的各个振动能级而形成,即其形状与第一电子激发单重态的振动能级分布有关。由于激发态和基态的振动能级分布具有相似性,因而呈镜像对称。S1S01)物质产生荧光的必要条件一种物质能否发荧光以及荧光强度的高低,与它的分子结构及所处的环境密切相关。能够发射荧光的物质都应同时具备两个条件:3.影响产生荧光及荧光强度的因素必要条件物质分子必须有强的紫外吸收(~*跃迁)物质具有较高的荧光效率。也称荧光量子产率,用f表示。凡是使kF增加,使其它去活化常数降低的因素均可增加荧光量子产率。通常,kF由分子结构决定(内因),而其它参数则由化学环境和结构共同决定。FfFVRICISCECPkΦkkkkkk发射的荧光量子数吸收的光量子数2.影响荧光及其强度的因素跃迁类型:如上所述,物质必须在紫外可见区有强吸收和高荧光效率才能产生荧光。具有—*跃迁的分子才有强吸收。共轭效应:大多数能产生荧光的物质都含有芳香环或杂环,具有共轭的~*跃迁。其共轭程度愈大,荧光效率也愈大,且最大激发和发射波长都向长波长方向移动,如苯、萘、蒽三种物质。苯萘蒽维生素A205nm286nm356nm327nm278nm321nm404nm510nm0.110.290.36exem刚性平面结构:当荧光分子共轭程度相同时,分子的刚性和共平面性越大,荧光效率越大。O-OOCOO-荧光物质(荧光素)-OOCOO-非荧光物质(酚酞)芴(Ф=1.0)联苯(Ф=0.2)有些物质本身不发荧光或荧光较弱,但和金属离子形成配合物后,如果刚性和共平面性增加,就可以发荧光或增强荧光。如8-羟基喹啉是弱荧光物质,与Mg2+、Al3+等金属离子形成的配合物的荧光增强,利用这一特点可以间接测定金属离子。NOH8-羟基喹啉NOAl/38-羟基喹啉-铝取代基团荧光分子上的各种取代基对分子的荧光光谱和荧光强度都有很大影响。给电子取代基如—NH2、—OH、—OCH3、—NHR、—NR2等,能增加分子的π电子共轭程度,使荧光效率提高。而-COOH、—NO2、—C=O、—F、—Cl等吸电子取代基,可减弱分子π电子共轭性,使荧光减弱甚至熄灭。还有一类取代基则对荧光的影响不明显,如—R、—SO3H、—NH3等。温度温度对被测溶液的荧光强度有明显的影响。当温度升高时,介质粘度减小,分子运动加快,分子间碰撞几率增加,从而使分子无辐射跃迁增加,荧光效率降低。故降低温度有利于提高荧光效率及荧光强度。溶剂同一种荧光物质在不同的溶剂中,其荧光光谱的位置和荧光强度可能会有一定的差别,尤其是那些分子中含有极性取代基的荧光物质,它们的荧光光谱易受溶剂的影响。溶剂的影响可以分为一般溶剂效应和特殊溶剂效应。一般溶剂效应是指溶剂极性的影响。通常情况下,随着溶剂极性增大,~*跃迁所需的能量差E减小,跃迁几率增加,从而使荧光波长长移,荧光强度增大。一般而言,探针激发态的偶极矩大于基态偶极矩,当荧光基团被激发后,溶剂的偶极子在激发态的荧光基团的周围重新定向而降低激发态的能量,溶剂的极性越大,荧光团激发态能量降低的越多,因而从激发态跃迁回基态时发射的能量越低,发射的波长就越长特殊溶剂效应是指溶剂与荧光物质形成化合物,或溶剂使荧光物质的电离状态改变,使荧光峰的波长和荧光强度都发生较大变化。如在萘胺的乙醇溶液中加入盐酸,随着溶液中盐酸浓度的增加,萘胺的—NH2基逐渐被—NH3Cl基所代替,而—NH3Cl基对萘环特征频率的影响小于—NH2,因此溶液的荧光光谱趋近于萘的荧光光谱。pH值:溶液的酸度(pH值)对荧光物质的影响可以分两个方面:1.若荧光物质本身是弱酸或弱碱时,溶液pH值改变,物质分子和其离子间的平衡也随之发生变化,而不同形体具有其各自特定的荧光光谱和荧光效率。例如苯胺NH3+NH2OH-H+OH-H+NH-PH2无荧光(离子形式)PH7~12蓝色荧光(分子形式)PH13无荧光(离子形式)2.对于金属离子与有机试剂生成的荧光配合物,溶液pH值的改变会影响配合物的组成,从而影响它们的荧光性质。例如Ga3+离子与邻-二羟基偶氮苯,在pH3~4的溶液中形成1:1配合物,能产生荧光。而在pH6~7的溶液中,则形成12的配合物,不产生荧光。总之,溶液pH值对荧光物质的荧光光谱、荧光效率及荧光强度均有影响。需通过条件实验找出pH与荧光强度的关系,确定最适宜的pH范围,以提高分析的灵敏度和准确度。Försterresonanceenergytransfer,(FRET)FRET是指在两个不同的荧光团中,如果一个荧光团(Doner)的发射光谱和另一个荧光团(Aceptor)的吸收光谱有一定的重叠,当这两个荧光团间的距离合适时(一般小于100Ǻ),就可以观察到荧光能量由供体向受体转移的现象,即用供体的激发波长激发时,可观察到受体的荧光发射。进一步讲,就是在供体的激发状态下由一对偶极子介导的能量从供体向受体转移的过程。此过程没有光子的参与,所以是非辐射性的。影响共振能量转移效率的因素1)供体的发射光谱与受体的吸收光谱重叠程度2)供体与受体间的距离3)供体与受体的跃迁偶极的相对取向选择性识别F-的荧光传感器受体分子是利用共振能量转移原理识别F−的传感器。在THF溶液中,以294nm(三芳基硼的吸收带)激发,只观察到位于670nm的卟啉的荧光发射峰而观测不到三芳基硼基团的荧光发射,说明发生了从三芳基硼到卟啉的能量转移过程。氟离子加入后与硼反应,使硼原子的杂化轨道由sp2变为sp3,进而减弱了体系的π共轭,阻断了能量转移的发生,于是产生两个新的荧光峰,分别位于356nm(三芳基硼的发射)和692nm(卟啉的发射),而位于670nm处的荧光强度减弱,说明由三芳基硼到卟啉的能量转移被阻断。因此该体系可用于比值法检测氟离子。选择性识别Na+的荧光传感器分子中芘为能量供体,蒽-9-羧酸酯为能量受体,杯芳烃为Na+的结合位点。在甲醇-四氢呋喃(15:1)的混合溶剂中,可同时观察到芘和蒽-9-羧酸酯的荧光发射。随着Na+的加入,相对于芘的荧光发射,蒽-9-羧酸酯的荧光增强程度更大,说明Na+的加入使芘与蒽-9-羧酸酯间的距离减小,能量转移效率提高。识别F-,HPO4-的荧光传感器受体分子未结合阴离子时存在从芘(能量供体)到2,3-二吡咯-喹喔啉(能量受体)的共振能量转移,以325nm(芘的吸收带)激发,观察到位于495nm的2,3-二吡咯-喹喔啉的强荧光发射峰。随着阴离子(F−或HPO42−)的加入,2,3-二吡咯-喹喔啉的荧光强度减弱,且其吸收光谱也发生变化,表明FRET过程受到抑制。通过对比实验,发现跟单独的2,3-二吡咯-喹喔啉相比,受体7通过FRET进行传感的灵敏度有所提高。

1 / 49
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功