2018年广西百色市中考数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共18页)2018年广西百色市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.(3分)的绝对值是()A.5B.C.﹣5D.2.(3分)如图,由5个完全一样的小正方体组成的几何体的主视图是()A.B.C.D.3.(3分)在△OAB中,∠O=90°,∠A=35°,则∠B=()A.35°B.55°C.65°D.145°4.(3分)某种细菌的半径是0.00000618米,用科学记数法把半径表示为()A.618×10﹣6B.6.18×10﹣7C.6.18×106D.6.18×10﹣65.(3分)顶角为30°的等腰三角形三条中线的交点是该三角形的()A.重心B.外心C.内心D.中心6.(3分)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)7.(3分)某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一位学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有()A.12名B.13名C.15名D.50名第2页(共18页)8.(3分)某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是()A.5和5.5B.5和5C.5和D.和5.59.(3分)给出下列5个命题:①两点之间直线最短;②同位角相等;③等角的补角相等;④不等式组的解集是﹣2<x<2;⑤对于函数y=﹣0.2x+11,y随x的增大而增大.其中真命题的个数是()A.2B.3C.4D.510.(3分)把抛物线y=﹣x2向右平移2个单位,则平移后所得抛物线的解析式为()A.y=﹣x2+2B.y=﹣(x+2)2C.y=﹣x2﹣2D.y=﹣(x﹣2)211.(3分)已知∠AOB=45°,求作∠AOP=22.5°,作法:(1)以O为圆心,任意长为半径画弧分别交OA,OB于点N,M;(2)分别以N,M为圆心,以OM长为半径在角的内部画弧交于点P;(3)作射线OP,则OP为∠AOB的平分线,可得∠AOP=22.5°根据以上作法,某同学有以下3种证明思路:①可证明△OPN≌△OPM,得∠POA=∠POB,可得;②可证明四边形OMPN为菱形,OP,MN互相垂直平分,得∠POA=∠POB,可得;③可证明△PMN为等边三角形,OP,MN互相垂直平分,从而得∠POA=∠POB,可得.你认为该同学以上3种证明思路中,正确的有()A.①②B.①③C.②③D.①②③12.(3分)对任意实数a,b定义运算“∅”:a∅b=,则函数y=x2∅(2﹣x)的最小值是()A.﹣1B.0C.1D.4第3页(共18页)二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)不等式x﹣2019>0的解集是.14.(3分)抛掷一枚质地均匀的硬币一次,正面朝上的概率是.15.(3分)如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是(用“=、>或<”连起来)16.(3分)观察以下一列数:3,,,,,…则第20个数是.17.(3分)如图,已知△ABC与△A′B′C′是以坐标原点O为位似中心的位似图形,且=,若点A(﹣1,0),点C(,1),则A′C′=.18.(3分)如图,把腰长为8的等腰直角三角板OAB的一直角边OA放在直线1上,按顺时针方向在l上转动两次,使得它的斜边转到l上,则直角边OA两次转动所扫过的面积为.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.(6分)计算:|2﹣|+2sin45°﹣()0.20.(6分)已知a2=19,求﹣的值.第4页(共18页)21.(6分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=(k≠0)的图象与AD边交于E(﹣4,),F(m,2)两点.(1)求k,m的值;(2)写出函数y=图象在菱形ABCD内x的取值范围.22.(8分)平行四边形ABCD中,∠A=60°,AB=2AD,BD的中垂线分别交AB,CD于点E,F,垂足为O.(1)求证:OE=OF;(2)若AD=6,求tan∠ABD的值.23.(8分)密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.24.(10分)班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:第5页(共18页)(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?25.(10分)已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.(1)求证:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的长.26.(12分)抛物线y=ax2+bx的顶点M(,3)关于x轴的对称点为B,点A为抛物线与x轴的一个交点,点A关于原点O的对称点为A′;已知C为A′B的中点,P为抛物线上一动点,作CD⊥x轴,PE⊥x轴,垂足分别为D,E.(1)求点A的坐标及抛物线的解析式;(2)当0<x<2时,是否存在点P使以点C,D,P,E为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.第6页(共18页)2018年广西百色市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.(3分)的绝对值是()A.5B.C.﹣5D.【解答】解:的绝对值是.故选:D.2.(3分)如图,由5个完全一样的小正方体组成的几何体的主视图是()A.B.C.D.【解答】解:由5个完全一样的小正方体组成的几何体的主视图是:,故选:B.3.(3分)在△OAB中,∠O=90°,∠A=35°,则∠B=()A.35°B.55°C.65°D.145°【解答】解:∵在△OAB中,∠O=90°,∠A=35°,∴∠B=90°﹣35°=55°.故选:B.4.(3分)某种细菌的半径是0.00000618米,用科学记数法把半径表示为()A.618×10﹣6B.6.18×10﹣7C.6.18×106D.6.18×10﹣6【解答】解:0.00000618米,用科学记数法把半径表示为6.18×10﹣6.故选:D.5.(3分)顶角为30°的等腰三角形三条中线的交点是该三角形的()第7页(共18页)A.重心B.外心C.内心D.中心【解答】解:三角形三条中线的交点是三角形的重心,故选:A.6.(3分)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)【解答】解:原式=x(1﹣4x2)=x(1+2x)(1﹣2x),故选:C.7.(3分)某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一位学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有()A.12名B.13名C.15名D.50名【解答】解:选书法课的人数有50﹣13﹣15﹣10=12,故选:A.8.(3分)某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是()A.5和5.5B.5和5C.5和D.和5.5【解答】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=(5+4.5+5+5.5+5.5+5+4.5)=5.故选:B.9.(3分)给出下列5个命题:①两点之间直线最短;②同位角相等;③等角的补角相等;④不等式组的解集是﹣2<x<2;⑤对于函数y=﹣0.2x+11,y随x的增大而增第8页(共18页)大.其中真命题的个数是()A.2B.3C.4D.5【解答】解:①两点之间线段最短,不正确;②两直线平行,同位角相等,不正确;③等角的补角相等,正确,是真命题;④不等式组的解集是﹣2<x<2,正确,是真命题;⑤对于函数y=﹣0.2x+11,y随x的增大而减小,不正确.真命题有:③④,2个,故选:A.10.(3分)把抛物线y=﹣x2向右平移2个单位,则平移后所得抛物线的解析式为()A.y=﹣x2+2B.y=﹣(x+2)2C.y=﹣x2﹣2D.y=﹣(x﹣2)2【解答】解:∵把抛物线y=﹣x2向右平移2个单位,∴平移后所得抛物线的解析式为:y=﹣(x﹣2)2.故选:D.11.(3分)已知∠AOB=45°,求作∠AOP=22.5°,作法:(1)以O为圆心,任意长为半径画弧分别交OA,OB于点N,M;(2)分别以N,M为圆心,以OM长为半径在角的内部画弧交于点P;(3)作射线OP,则OP为∠AOB的平分线,可得∠AOP=22.5°根据以上作法,某同学有以下3种证明思路:①可证明△OPN≌△OPM,得∠POA=∠POB,可得;②可证明四边形OMPN为菱形,OP,MN互相垂直平分,得∠POA=∠POB,可得;③可证明△PMN为等边三角形,OP,MN互相垂直平分,从而得∠POA=∠POB,可得.你认为该同学以上3种证明思路中,正确的有()第9页(共18页)A.①②B.①③C.②③D.①②③【解答】解:①由作图得:OM=ON,PM=PN,∵OP=OP,∴△OMP≌△ONP(SSS),∴∠POA=∠POB;故①正确;②由作图得:OM=ON=PM=PN,∴四边形MONP是菱形,∴OP平分∠MON,∴∠POA=∠POB,故②正确;③∵PM=PN,但MN不一定与PM相等,∴△PMN不一定是等边三角形,正确证明:∵OM=ON,PM=PN,∴OP是MN的中垂线,∴OP⊥MN,∴∠POA=∠POB,故③不正确;故选:A.12.(3分)对任意实数a,b定义运算“∅”:a∅b=,则函数y=x2∅(2﹣x)的最小值是()A.﹣1B.0C.1D.4【解答】解:∵a∅b=,∴y=x2∅(2﹣x)=,∵x2>2﹣x第10页(共18页)∴x2+x﹣2>0,解得x<﹣2或x>1,此时,y>1无最小值,∵x2≤2﹣x,∴x2+x﹣2≤0,解得:﹣2≤x≤1,∵y=﹣x+2是减函数,∴当x=1时,y=﹣x+2有最小值是1,∴函数y=x2∅(2﹣x)的最小值是1,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)不等式x﹣2019>0的解集是x>2019.【解答】解:x﹣2019>0,移项得,x>2019,故答案为x>2019.14.(3分)抛掷一枚质地均匀的硬币一次,正面朝上的概率是.【解答】解:抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=,故答案为:.15.(3分)如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是S1=S<S2(用“=、>或<”连起来)【解答】解:∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,第11页(共18页)∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.16.(3分)观察以下一列数:3,,,,,…则

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功