1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即===2R(R为△ABC外接圆半径)AasinBbsinCcsin2.正弦定理的应用:从理论上正弦定理可解决两类问题:1.两角和任意一边,求其它两边和一角;2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角。(见图示)已知a,b和A,用正弦定理求B时的各种情况:)(ba),(babsinA)(bsinAasin锐角一解一钝一锐二解直角一解无解Aba复习a≥ba>bsinAa<ba=bsinAa<bsinAabABCabABCabABCabABC一解两解一解无解(1)若A<90º,又可有下表:ACababsinA无解ACaba=bsinA一解ACabbsinAab两解BB1B2BACbaab一解aABabCABabCABabCab无解a=b无解ab一解(2)若A90º,又可有下形式:2.余弦定理可以解决的问题利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角。1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。即Abccbacos2222bcacbA2cos222Bacacbcos2222cabacB2cos222Cabbaccos2222abcbaC2cos222例1在ΔABC中,已知a=7,b=10,c=6,求A、B和C.解:∵=0.725,∴A≈44°bcacbA2cos222∵=0.8071,∴C≈36°,abcbaC2cos222∴B=180°-(A+C)≈100.(∵sinC=≈0.5954,∴C≈36°或144°(舍).)aAcsin举例例2在ΔABC中,已知a=2.730,b=3.696,C=82°28′,解这个三角形.解:由,得c≈4.297.Cabbaccos2222∵≈0.7767,∴A≈39°2′,bcacbA2cos222∴B=180°-(A+C)=58°30′.(∵sinA=≈0.6299∴A=39°或141°(舍).),cCasin例3ΔABC三个顶点坐标为A(6,5)、B(-2,8)、C(4,1),求角A.87654321-4-22468CBA解法一:∵|AB|=|BC|=|AC|=73)85()]2(6[2285)18()42(2252)15()46(22ACABBCACABA2cos2223652∴A≈84°.解法二:∵=(–8,3),=(–2,–4).ABAC∴cosA==,∴A≈84°.ACABACAB36525273)4(3)2()8(1.在△ABC中,bCosA=acosB,则三角形为()A.直角三角形B.C.D.等边三角形C解法一:利用余弦定理将角化为边.∵bcosA=acosB,acbcaabcacbb22222222∴b2+c2-a2=a2+c2-b2,∴a2=b2,∴a=b,故此三角形是等腰三角形.解法二:利用正弦定理将边转化为角.∵bcosA=acosB又b=2RsinB,a=2RsinA,∴2RsinBcosA=2RsinAcosB∴sinAcosB-cosAsinB=0∴sin(A-B)=0∵0<A,B<π,∴-π<A-B<π,∴A-B=0即A=B故此三角形是等腰三角形.返回练习2.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为。3.在△ABC中,sinA=2cosBsinC,则三角形为。4.在△ABC中,BC=3,AB=2,且,A=。)16(52sinsinBC直角三角形等腰三角形锐角三角形钝角三角形120°5.在△ABC中,已知sinB·sinC=cos2,试判断此三角形的类型.2A解:∵sinB·sinC=cos2,∴sinB·sinC=2A2cos1A∴2sinB·sinC=1+cos[180°-(B+C)]将cos(B+C)=cosBcosC-sinBsinC代入上式得cosBcosC+sinBsinC=1,∴cos(B-C)=1又0<B,C<π,∴-π<B-C<π∴B-C=0∴B=C故此三角形是等腰三角形.6.,1,,33,tan_____.ABCBCBABCC在中当的面积为时ACB.4323121sin21:ABABBBCABSABC解sintanC23.cosBB1326213131sin13131132161132cos2222CBCACABBCAcC.1313211421162222ACBCOSBCABBCABAC余弦定理及其应用cabacB2cos222Abccbacos2222bcacbA2cos222Bacacbcos2222Cabbaccos2222abcbaC2cos222小结作业:1.在△ABC中,A=60°,a=4,b=4,求角B.2.,,,,,,,,,ABCABCabca3b2B45A在中角的对边为若求角。3.在△ABC中,若求AB.3tan,120,23,4ACBC4.已知圆的半径为4,a、b、c为该圆的内接三角形的三边,若abc=16,求三角形的面积.5.已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,求边BC上的中线AD的长.6.在⊿ABC中,如果(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,试确定⊿ABC的形状。7.△ABC中,a,b,c分别表示三个内角A、B、C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),试判断该三角形的形状.